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Message from the
PrincipalPrincipal
Rev. Dr. Dominic Savio, S.J. 
Principal,  
SStt..  XXaavviieerr’’ss  CCoolllleeggee  ((AAuuttoonnoommoouuss)),,  KKoollkkaattaa..  
 
 
 
 
 
 
“It gives me pleasure to note that the Department of Mathematics of our 
college is bringing out its 9th Edition of the annual departmental magazine, 
BEACON. 
 
I am glad that by virtue of this publication, the department aims to exhibit 
the various aspects of the students and showcase the extraordinary cum 
unique skills and creativity of the students of the department. The 
magazine has always endeavoured to provide an opportunity to the 
students to delve deep into the realm of research and development apart 
from their curriculum. 
 
I would like to extend my heartiest congratulations to the entire 
department, its faculty members, and the editorial board on their untiring 
efforts on making the 9th edition of this magazine a success. I wish them 
success in their efforts in publishing the BEACON.  
 
All the very best. 
May God bless you all! Nihil Ultra!” 
 
 
 
 
 
 
 
                                                                                    PRINCIPAL 



Prof. Bertram Da’Silva, 
Vice-Principal, 
Department of Arts and Science, 
SStt..  XXaavviieerr’’ss  CCoolllleeggee  ((AAuuttoonnoommoouuss)),,  KKoollkkaattaa..  
 
 
 
 
 
“I am extremely elated to take note that the Department of Mathematics is 
geared up to publish the 9th edition of their Departmental Magazine, 
BEACON 2021. 
 
It is through this annual magazine BEACON that the student’s creativity 
and imagination are portrayed every year. We believe in letting the 
students bloom and grow in whichever field they are good at or are 
interested in. Thus, we try to encourage all the talents and resources hidden 
in them. It gives them a touch of the enormous world of science or 
literature when they traverse various paths to write on different topics.  
 
These articles and works echo many rich frames of minds of the students 
that the department imbibes in them. At the same juncture, the magazine 
serves as a realm for students from all other departments to publish 
articles, art, and literary works. 
 
I would like to congratulate the efforts of the entire department and the 
editorial team, which resulted in the accomplishment of the yearly 
chronicle, and I wish them success for their future endeavours. May they 
keep illuminating the paths for the newcomers to unveil the unknown.” 
 
 
 
 
 
 
                                                                   
                                                                                VICE-PRINCIPAL 

Message from the
Vice-PrincipalVice-Principal



Dr.Tapati Dutta, 
Dean of Science, 
SStt..  XXaavviieerr’’ss  CCoolllleeggee  ((AAuuttoonnoommoouuss)),,  KKoollkkaattaa..  
  
 
 
 
 
“I am immensely pleased to pen down the message for the annual 
publication of the Department of Mathematics, BEACON 2021. The 
publication has always been a platform for the students to showcase and 
exhibit their plethora of talent in their field of study. 
 
I am elated that by virtue of this magazine, the department targets to 
mirror the various talents of the students and witnesses the skills and 
creativities of the students. The magazine has always served as a platform 
to provide a stage to the students to expound their thoughts through an 
article of research and their own perspectives. 
 
I would like to extend my heartiest congratulations to the entire 
department, for their efforts on making this edition of the magazine a 
success and in their efforts in rolling out the BEACON.” 
 
 
 
 
 
 
 
 
 
                                                                                     DEAN OF SCIENCE 
 
 

Message from the
Dean of ScienceDean of Science



Prof. Sucharita Roy 
Head of the Department, 
Department of Mathematics, 
SStt..  XXaavviieerr’’ss  CCoolllleeggee  ((AAuuttoonnoommoouuss)),,  KKoollkkaattaa..  
 
 
 
 
“BEACON is a collaborative effort of the students as well as the professors 
which include illuminating articles and problems in the subject, poetry, 
puzzles and many more facets. ‘Beacon’ is not just a departmental 
publication as it instigates the students to contribute new ideas, 
innovations, research, and applications outside classroom topics. We have 
been able to mirror the teamwork of this department in the magazine, 
which would not have been possible without the untiring and dogged 
determination of the students amidst the covid crisis. 
 
I would like to extend my heartfelt gratitude to Father Principal, Vice-
Principal, and the Deans for their consistence. I am thankful to the 
Programme and Publication Committee, for their support. I feel proud to 
commend and acclaim the Student Editorial board for their hard work to 
make this issue a reality. 
 
This magazine serves as the epitome for the young brains towards 
becoming great mathematicians. Last but not the least; I would like to 
thank all the students who gave tireless effort to bring the 9th edition of 
BEACON.” 
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Prof.Gaurab Tripathi 
Assistant Professor, 
Department of Mathematics, 
SStt..  XXaavviieerr’’ss  CCoolllleeggee  ((AAuuttoonnoommoouuss)),,  KKoollkkaattaa..  
 

 
 

 

Just like the previous years, the Departmental Magazine “BEACON” has 
been designed and conceptualised by the combined effort of the students 
and teachers for this year as well. I feel extremely happy that the 
responsibility of writing editorial was bestowed upon me, especially amidst 
the current pandemic situation. Magazine is means to provide platform for 
students to come forward, identify their talent, discover their potential, and 
move on the path of progress. It is supposed to garner diverse thoughts and 
expressions. The aim of publishing ‘BEACON’ is to encourage creativity of 
thoughts among the students so that they may learn and grow in every 
aspect. In this publication, wide varieties of articles are contributed by the 
students, and I am delighted to see that inventive capacity of our students 
have been transformed into a tangible way. 

I would like to extend my thanks to the editorial team and the students for 
their untiring efforts in bringing the publication a success.  

 

 

 

 

                                    
                                                                                           EDITOR 

Message from the
EditorEditor



 

It gives us immense pleasure to bring out the 9th Edition of the Departmental 
Magazine, Beacon. This chronicle would allow the readers to gauge the 
principles, values, and ideology of the department. It also serves as a forum 
for the expression of the literary, artistic, and research-oriented works of the 
students. The diversity, variety and creativity of the articles and works 
represent the storehouse of talents present in the department. Each edition 
of Beacon is a milestone which chronicles our growth and celebrates the 
achievements of the students. Every line in the magazine reflects a mind 
where inspiring thoughts take shape. 

Regardless of diverse situations, disparate temperaments and assorted 
backgrounds of the students, the spirit of unanimity, coherence and affinity 
can be seen in various pages. This edition marks our rise, unravels our 
artistry, and accords life to our thoughts and aspirations.  

Firstly, we would like to thank Prof.Gaurab Tripathi, who supported us 
from the commencement of this journey till the very end. We are also 
extremely grateful to Prof. Sucharita Roy, Head of the Department of 
Mathematics for her constant support and guidance in the accomplishment 
of this magazine. We convey our gratitude towards the Principal, the Vice-
principal and the Dean of Science for their cordial encouragement and 
consent.  

Last but not the least, we would like to extend our heartiest congratulations 
to the Editorial Board for completing this Herculean task diligently and 
compiling a collection of articles for the students. We also appreciate the 
hard work done by the Graphics Committee. 

Happy Reading! 

 

             
          Sayantan Porel           Sampurna Mondal 
         (Student Editor)     (Associate Student Editor) 
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RANDOM GRAPHS, SOCIAL NETWORKS RANDOM GRAPHS, SOCIAL NETWORKS 
AND MATHEMATICS AROUND ITAND MATHEMATICS AROUND IT

Dr. Rajat Subhra HazraDr. Rajat Subhra Hazra
Associate ProfessorAssociate Professor

Theoretical Statistics & Mathematics UnitTheoretical Statistics & Mathematics Unit
Indiam Statistical Institute, KolkataIndiam Statistical Institute, Kolkata

Shanti Swarup Bhatnagar Awardee,Shanti Swarup Bhatnagar Awardee,
Science & Technology, 2020Science & Technology, 2020

Random graphs, Social Networks and Mathematics
around it

Real-world networks. You might have heard of the term real-world networks. This term is
used to refer to networks that appear in nature and society. The largest example of a network
is our brain. The neurons form for a huge network in the human cortex that is estimated to
be of size 1010. The connection between two neurons is through synapses. Another example
is cyberspace. Jim Gray was a computer scientist. He won the Turning award in 1998 and
said “the emergence of cyberspace and the World Wide Web is like the discovery of a new
continent”. The vertices of the World Wide Web (WWW) are Web pages and the edges are
hyperlinks (URLs) that point from one page to another. In 2011, Google reported that WWW
has more than a trillion edges. A further important example is (online) social networks.
Each vertex represents a human. Each edge corresponds to some sort of interaction, e.g.
friendship. Edges can be either undirected or directed. For instance, an undirected edge
occurs if two Facebook accounts are connected to each other, while a directed edge occurs
if one account follows the other account in Twitter. Nowadays, social media are part of our
daily lives, and can affect society immensely. There are many more examples of networks
that effect our day to day lives.
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Random graphs. Mathematically, a network is a graph G that is represented by a pair
(V, E), where V is the set of vertices and E is the set of edges, i.e., connections between the
vertices. Typically, the vertex set is a finite set consisting of n points, i.e., we identify V with
{1, . . . , n} and denote an edge between vertices i and j by {i, j}. The term random graph
is used when there is uncertainty involved in the way {i, j} is formed. Let us consider an
example to explain this. Say, 30 students are selected from a school. These students can be
thought of as the vertex set. Every pair of students (How many are there?) is given a coin and
is asked to toss. If the coin lands on head, then there is friendship between the pair, while if
it lands on tail, then there is no friendship. All the coin tosses are independent, in the sense
that they do not influence each other. How many graphs can you form? A little thought will
tell you that the number is 2435. Since the result of the coin toss is uncertain, the formation of
the edge is uncertain, and graphs obtained in this way are called random graphs. The best
way to describe uncertain objects is through the language of probability.

A simple model. The above experiment was formalised as a model in 1959 by two Hun-
garian mathematicians: Paul Erdős and Alfred Rényi (see picture).

Although their model is simple to describe, it has many in-
teresting features, which mathematicians are trying to under-
stand. Firstly, the coin we need to use may be biased: the prob-
ability of head is a number p ∈ [0, 1] and the probability of
tail is q = 1 − p. Instead of 30, they started with a vertex set
V of n points, denoted by {1, . . . , n}. For any pair of vertices
i and j (with i �= j), toss a coin and assign an edge if it lands
on head and do not assign an edge if it lands on tail. Perform
the tosses independently of each other. The resulting random
graph G(n, p) depends on the two parameters n and p.

One of the important objects to study is the degree of a vertex i, which represents the number
of friends of the vertex i. We denote this number by deg(i). It is an easy exercise to show
that

P(deg(i) = k) =
(

n − 1
k

)
pk(1 − p)n−1−k, k = 0, . . . , n − 1.

Think about it! From this it is not hard to see that the average degree is given by (n − 1)p. So,
in the experiment we described before, with 30 students, any student has an average of 14.5
friends. Let us denote the degrees of the vertices by (deg(1), deg(2), · · · , deg(n)). It might
interest you to compute and see the following statistical quantities for this basic model.

• Average of the degrees: E[deg(i)] :=
∑∞

k=1 kP(deg(i) = k).

• Variance of the degrees: Var(deg(i)) = E[deg(i)2]− E[deg(i)]2.

• Covariance of the degrees:
Cov(deg(i), deg(j)) = E [(deg(i)− E[deg(i)])(deg(j)− E[deg(j)]].

• Friendship Paradox: When you view yourself as the random individual, then show
that on an average, a random friend of yours has more friends than you do! Can you
formulate this mathematically?

2
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Note that p = 0 and p = 1 are the uninteresting cases and we will avoid them. We claimed
that E[deg(i)] = (n − 1)p (which you may verify). Hence, for fixed p, if we let n be very
large, then the average degree is very large for each vertex. This is not a realistic scenario
always, and instead we may take p = c/(n − 1) for some c ∈ (0, ∞), for which the average
degree equals c for all n. This setting is called sparse random graph.

It is important to understand how the degrees behave for large n. One of your tasks is to
show that, for p = c/(n − 1),

P(deg(i) = k) n→∞−→ e−cck

k!
, k = 0, 1, . . .

It turns out that the geometry of the graph for large n depends on whether c < 1, c > 1 or
c = 1.

Adjacency matrix Let G be an undirected graph on n vertices. Consider the matrix AG
given by

AG(i, j) =

{
1 if there is an edge between i and j,
0 otherwise.

This is called the adjacency matrix. Note that knowing the whole adjacency matrix gives
you full knowledge about the graph itself. Here is an example with 4 vertices:

1

234

The corresponding AG is the 4 × 4 matrix given by

AG =




0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0




We are interested in studying the adjacency matrix for G(n, p). There are various properties
of this matrix that we can look at, for example, eigenvalues, eigenvectors, determinants,
invertibility, etc. Recall that an n × n matrix A is invertible when there exists a matrix A−1

such that AA−1 = A−1A = In, where In is the identity matrix given by

In =




1 0 · · · 0
0 1 0 · · ·
...

...
...

...
0 0 · · · 1
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We want to describe an open problem that might interest you! Look at

pn(p) = P(AG(n,p) is invertible)?

Note that when p = 0, the matrix has only zero entries and hence it is not invertible. Also
when p = 1 it is not invertible (why?). The interesting case is p ∈ (0, 1), where p may depend
on n. You can first study the case p = 1

2 (the problem with a fair coin), and for small values
of n compute this probability by hand. Next, can you show that pn(

1
2) → 0 as n becomes

large? It would be interesting to do some simulations to estimate pn(
1
2). One reason for non-

invertibility is the presence of a zero row or a zero column or presence of two rows which
are same (In terms of friendships, this amounts to finding out what is the probability that
there is a student who has no friends at all!) This should give a lower estimate (can you guess
this estimate?) on pn(p), but can it also be used to get an upper bound? The conjecture is

2n pn(
1
2
) → 1.

Local view. Another question that matters in social networks these days is: “What does a
random graph look like?” This is not a well-posed mathematical question. We have to frame
it in a more mathematical format. For example, it is well-known that for p = c/(n − 1) the
graph locally looks like a tree (a tree is a graph that does not have any cycle). There are different
ways to make this precise by looking at neighbourhoods of points. For p fixed there are
more challenges. One of the useful quantities that have come into the foray is the theory of
graphons.

This theory was mainly developed by László Lovász (see pic-
ture), who was awarded the prestigious Abel Prize this year, a
prize that is considered to be the Nobel prize in mathematics.
Graphons are functions that arise as limits of adjacency matri-
ces. They are symmetric functions on the unit square [0, 1]2.
From the adjacency matrix of a labeled graph, construct the
graph’s pixel picture by turning the 1’s into black squares, the
0’s into white square, and scaling everything down to the unit
square [0, 1]2. Here is an example of how to construct graphons:

( 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
−→

Suppose you take an Erdős- Rényi random graph with edge probabilities 1/2. Where
does this random graph converge in terms on graphon? Pixel pictures may be seen to “converge”
graphically; those of larger and larger random graphs with edge probability 1/2, regardless
of how they are labeled, seem to converge to a gray square, the constant 1/2 function on
[0, 1]2. The following picture simulates this convergence graphically.

4
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László Lovász has build up this theory using fundamental mathematical concepts and
today the theory of dense graphs is better understood thanks to this mechanism. For further
reading one may consult his book on dense graphs which is freely available on his website.

Social network . In 1967, psychologist Stanley Milgram performed the following exper-
iment. He sent 60 letters to various people in Wichita, Kansas, USA, who were asked to
forward the letter to a specific person in Cambridge, Massachusetts, USA. The participants
could only pass the letters (by hand) to personal acquaintances who they thought might be
able to reach the target, either directly or via “friends of friends”. While 50 people responded
to the challenge, only 3 letters (roughly 5%) reached their destination. In later experiments,
Milgram managed to increase the success rate to 35%, respec- tively, 95% by pretending that
the value of the package was high, and by providing more clues about the recipient, such as
his/her occupation. The main conclusion from the work of Milgram was that most people
are connected by a chain of at most 6 “friends of friends”, and this fact was dubbed with the
phrase Six Degrees of Separation. The idea of “close connectedness” was first proposed in
1929 by the Hungarian writer Frigyes Karinthy, in a short story called Chains. Later play-
wright John Guare popularised the phrase when he chose it as the title for his 1990 play. In
this play, Ousa, one of the main characters, says: “Everybody on this planet is separated only
by six other people. Six degrees of separation. Between us and everybody else on this planet. The
president of the United States. A gondolier in Venice ... It’s not just the big names. It’s anyone. A
native in the rain forest. (...) An Eskimo. I am bound to everyone on this planet by a trail of six
people. It is a profound thought.”

The fact that, on average, people can be reached by a chain of at most 6 intermediaries
is rather striking. It implies that any two people in remote areas such as Greenland and
the Amazon can be linked by a sequence of on average 6 intermediaries. This makes the
phrase It is a small world we live in! very appropriate indeed. The idea of Milgram was
taken up afresh in 2001, with the added possibilities of the computer era. In 2001, Dun-
can Watts, a professor at Columbia University, recreated Milgram’s experiment using an
e-mail message as the “package” that needed to be delivered. Surprisingly, after reviewing
the data collected by 48,000 senders and 19 targets in 157 different countries, Watts again
found that the average number of intermediaries was 6. The research of Watts and the ad-
vent of the computer age have opened up new areas of inquiry related to “Six Degrees of
Separation” in diverse areas of network theory, such as electrical power grids, disease trans-
mission, corporate communication, and computer circuitry. To put the idea of a small world
into network language, we define the vertices of the social graph to be the inhabitants of
the world (n ≈ 7 × 109), and we draw an edge between two people when they “know each
other” just like the Erdős-Rényi random graph. Possibilities are various: it could mean that
the two people involved have shaken hands at some point, or meet regularly, or address
each other on a first-name basis, etc. The precise choice affects the connectivity of the so-
cial graph and hence the conclusions we may draw about its topology. One of the main
difficulties with social networks is that they are notoriously hard to measure. Question-
aires cannot always be trusted, because people have different ideas about what a certain

5
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social relation is. Also, questionaires take time to fill out and to collect. As a result, re-
searchers are interested in examples of social networks that can be more easily measured,
for instance, because they are electronic. Examples are e-mail networks, or social networks
such as Facebook. For more readings one can visit https://research.fb.com/blog/
2016/02/three-and-a-half-degrees-of-separation/ and see that Facebook has
now 3.5 degrees of separation.

A task for you: Find out a proper mathematical formulation of six degrees of separation?

Conclusion: The article aims to expose you to some buzz-words in the theory of random
graphs and it is no way a survey of the brilliant mathematics that lurks behind it. There
are wonderful books and expositions in the internet which you can read. Everyday the
social networks is providing us with interesting mathematical problem. Question is is our
mathematics community ready to face this challenge? The answer lies upon the young graduates
of mathematics, statistics, physics and computer science.

6

           
           In mathematical logic, Russell’s paradox (also known as Russell’s 
antinomy), is a set-theoretic paradox discovered by the British philosopher and 
mathematician Bertrand Russell in 1901.Russell’s paradox shows that every set 
theory that contains an unrestricted comprehension principle leads to contradic-
tions . According to the unrestricted comprehension principle, for any sufficiently 
well-defined property, there is the set of all and only the objects that have that 
property. Let R be the set of all sets that are not members of themselves. If R is not 
a member of itself, then its definition entails that it is a member of itself; if it is a 
member of itself, then it is not a member of itself, since it is the set of all sets that 
are not members of themselves. The resulting contradiction is Russell’s paradox.
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Prof. Sourabh BhattacharyaProf. Sourabh Bhattacharya
Associate ProfessorAssociate Professor

Interdisciplinary Statistical Research UnitInterdisciplinary Statistical Research Unit
Indian Statistical Institute, KolkataIndian Statistical Institute, Kolkata

Could the Greatest Ever Mathematical

Conjecture be False?

Sourabh Bhattacharya∗

1 Introduction

The great mathematician George Pólya narrated the following anecdote about another great math-
ematician David Hilbert: The thirteenth-century German emperor Frederick Barbarossa, who died
while on a crusade, was popularly supposed by Germans to be still alive, asleep in a cave deep in
the Kyffhäser Mountains, ready to awake and emerge when Germany needed him. Someone asked
Hilbert what he would do if, like Barbarossa, he could be revived after a sleep of several centuries.
Hilbert: “I would ask whether anyone had proved the Riemann Hypothesis.”

Indeed, it was Hilbert who, in the Second International Congress of Mathematicians held in Paris
in the year 1900, had listed the Riemann Hypothesis (henceforth, RH) as the eighth among 23 most
important unsolved mathematics problems. Although listed as eighth, it soon became apparent
to Hilbert, as the above story clarifies, that RH was the most important of them. If Hilbert is to
awake today, he will find that RH remains unproved even to this day, and will go into slumber
once again! Some day, he might wake up again following a disturbing hue and cry, only to discover
that RH has not been proved, but disproved. This might cause him to fall asleep, along with a
major part of the number theory discipline, for good!

In the year 2000, the Clay Mathematics Institute announced one million dollar prize for the reso-
lution of RH, along with six other open problems, of which only the Poincare conjecture has been
solved (by Grigori Perelman, who incidentally, declined the prize). Among all the seven problems,
RH towers over the rest and there have been innumerable attempts by mathematicians, amateurs
and high-profiles, to prove RH and almost every purported proof has been greatly hyped. Alas!
All the proofs so far turned out to be erroneous.

What is this RH that is causing Hilbert to repeatedly fall asleep after revivals and giving other
mathematicians sleepless nights? As we shall soon discover, it is a deceptively naive statement,
which might seem to be a low-hanging fruit to most mathematicians. Yet, as they attempt to lay
their hands on the fruit, the tree hauls it up far above their heads like a cruel banter!

Indeed, RH is simply about locations of the roots of a so-called zeta-function of complex numbers –
all non-trivial roots of the zeta function have real part 1/2, is the conjecture made by the legendary
mathematician Georg Friedrich Bernhard Riemann. Riemann himself seemed to be an embodiment
of his conjecture – simple and shy outwardly but with an inward depth as unfathomable as can be!

2 The conjecture and its importance

Let

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · ,

where s is any complex number. The above zeta function satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

from which it follows that −2,−4,−6,−8, · · · , are roots (zeros) of the zeta function. These zeros
are called the trivial zeros since their existence is trivially asserted from sin

(
πs
2

)
being 0 in the

above functional equation.

As can be proved, there are other zeros on the open strip where the real part of s lies between 0
and 1. This strip, containing the non-trivial zeros, is called the critical strip. All the non-trivial

∗Sourabh Bhattacharya is an Associate Professor in Interdisciplinary Statistical Research Unit, Indian Statistical
Institute, 203, B. T. Road, Kolkata 700108. Corresponding e-mail: bhsourabh@gmail.com.
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zeros are complex numbers. The sub-region where the real part of s is 1/2 is called the critical
line. Riemann conjectured, in his 1859 paper “On the Number of Prime Numbers Less Than a
Given Quantity”, his only paper on number theory, that all the non-trivial zeros lie on the critical
line. This is the celebrated RH, of which Riemann himself admitted his failure to prove in his
“fleeting vain attempts”: One would, of course, like to have a rigorous proof of this, but I have put
aside the search for such a proof after some fleeting vain attempts (einigen flüchtigen vergeblichen
Versuchen) because it is not necessary for the immediate objective of my investigation.

The great importance of RH lies in its intimate connection with the prime numbers that are in the
heart of the number theory discipline. There are innumerable important results on prime numbers
that are proven under the assumption that RH is true. If the RH eventually turns out to be false,
a major portion of number theory will come crashing down. Moreover, the prime numbers have
important practical applications in the design of encryption methods for military and civilian use
such as banking systems. Proof of RH can enhance the consequences of the methods used in such
systems.

3 Relationship between RH and prime numbers

For any positive real value x, let π(x) denote the number of primes less than or equal to x, that is
the prime counting function. Then the prime number theorem says that π(x) ∼ x

log(x) , as x → ∞,

that is,

lim
x→∞

π(x)

x/ log(x)
= 1.

The result, although proved and published independently by de la Vallée Poussin and Hadamard
in 1896, it was already conjectured by Gauss in 1792. Further, with Li(x) =

∫ x

2
dt

log(t) , it can be

shown that Li(x) ∼ x
log(x) , as x → ∞, and RH has the equivalent re-statement

π(x) = Li(x) +O
(√

x log(x)
)
, as x → ∞.

This re-statement implicitly shows the connection between RH and prime numbers. More explicit
relationship can be observed as follows.

For x > 0, consider the function

J(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) +

1

4
π(x1/4) +

1

5
π(x1/5) + · · · .

Note that J(x) is not an infinite series, since after a first finite number of terms, the remaining
terms become zero. Also consider the so-called Möbius function given by

µ(n) =




−1 if n is a square-free positive integer with an odd number of prime factors;
0 if n has a squared prime factor;
1 if n is a square-free positive integer with an even number of prime factors,

(1)
where, by square-free integer we mean that the integer is not divisible by any perfect square other
than 1. With these new functions J(·) and µ(·), the prime counting function can be expressed as
the following:

π(x) =
∑
n

µ(n)

n
J
(
x1/n

)
. (2)

Using the J(·) function, Riemann’s zeta function admits the following expression

1

s
log ζ(s) =

∫ ∞

0

J(x)x−s−1dx. (3)

Now, by inverting (3), J(x) can be expressed in terms of the zeta function, which can be plugged
into (2) to write π(x) in terms of Riemann’s zeta function. The actual expression of J(x) in terms
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of the zeta function obtained by inversion of (3) is, in fact, the main result of Riemann’s 1859
paper and has the following form:

J(x) = Li(x)−
∑
ρ

Li(xρ)− log(2) +

∫ ∞

x

dt

t(t2 − 1) log(t)
, (4)

where the values of ρ are nothing but the non-trivial zeros of the zeta function. Thus although at
first glance (4) gives the impression that J(x) does not depend upon ζ, it actually depends upon
ζ through its non-trivial zeros.

The above arguments show that the primes and the zeta function are explicitly related and hence
are RH and the prime numbers. Remarkably, this relation can be viewed as a bridge between
number theory (related to π(x)) and (complex) analysis and calculus (associated with the zeta
function).

4 Quantum connection of RH

The concept of random matrix, that is matrix with elements drawn from probability distributions,
is central for studying complex quantum dynamical systems. In particular, Hermitian matri-
ces, where the real and imaginary parts of the elements are modeled independently by standard
normal distribution, turned out to provide adequate fit to certain quantum-dynamical systems.
Importantly, their eigenvalues were suitable candidates for modeling the energy levels observed in
experiments. A further characteristic of the eigenvalues is that they exhibited a tendency to repel
each other. Hence, studying the probabilistic distribution of the spacings between the eigenvalues
was deemed important by many physicists. Freeman Dyson was one such physicist with reasonable
expertise in this area.

In 1972, a chance meeting between the number theorist Hugh Montgomery, then a PhD student
who had just submitted his thesis on differences between the non-trivial zeros of Riemann’s zeta
function and Freeman Dyson, led to a very interesting and unlikely connection between the spacings
of the non-trivial zeta zeros and eigenvalues of random Hermitian matrices. Further substantiated
by the computational works of Andrew Odlyzko, this gave birth to the Montgomery-Odlyzko Law
that the distribution of the spacings between successive non-trivial zeros of the Riemann zeta
function (suitably normalized) is statistically identical with the distribution of eigenvalue spacings
associated with random Hermitian matrices with real and imaginary parts of the elements modeled
by standard normal distribution.

The above “law”, however, is not a mathematical proof – it is based on experiments. Indeed,
since the zeros of the Riemann zeta function are deterministic, the spacings between them are also
deterministic. Hence, associating the spacings with distributions seems to be over the line. Proper
formulation would need embedding the zeta zero spacings in some appropriate stochastic process
framework associated with infinite-dimensional random Hermitian matrices. Nevertheless, the line
of thought leading to the law naturally motivated the following questions. Since the operators
represented by such random Hermitian matrices can be used to model certain dynamical systems
in quantum physics, can there exist a Riemann operator, an operator whose eigenvalues are exactly
the zeros of the zeta function? If so, does it represent some dynamical system that could be created
in a physics lab, and could that help to prove RH?

Indeed, in 1986 Michael Berry, a British mathematical physicist had published a paper titled
“Riemann’s Zeta Function: A Model for Quantum Chaos?” This paper used results and discussions
widely circulated at this time to come to the conclusion that a Riemann operator corresponds to a
chaotic dynamical system. He further argued that the energy levels of that system must be given
by the eigenvalues of the system, which are also the imaginary parts of the zeta zeros. And that
the periodic orbits in the chaotic system would correspond to the prime numbers!

Alain Connes, a French mathematician and theoretical physicist, considered an alternative route.
Instead of attempting to identify operators that correspond to the zeta zeros, he constructed an
operator that yields the zeta zeros as its eigenvalues. Specifically, the energy levels (eigenvalues)
in his construction are precisely the Riemann zeta zeros on the critical line! At first read of this
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description, one might form the impression that RH has been proved by Connes, but dear reader,
pause a while and re-think. It is a purely constructive work with the aim to re-create the zeros of
the zeta function only the critical line. Indeed, Connes offered no explanation as to why there can
not be zeros off the critical line.

5 Bayes meets Riemann

As is well-known, the discipline statistics embodies two paradigms – frequentist and Bayesian.
While the former considers the unknown parameter to be fixed, the latter attempts to quantify
its uncertainty through “prior distribution”, which renders the parameter operationally random.
Inference about the parameter is obtained from the conditional distribution of the parameter given
observed data, namely, the “posterior distribution”, which is usually a normalized product of the
prior and the likelihood function of the parameter given the data.

Now, given the wholly probabilistic nature of the Bayesian premise, how can the completely de-
terministic RH fit in? How is the unique nature of RH relevant to Bayesian statistics anyway?
Where is the data, what are the parameters, and what is the prior? At first thought, one would
be rendered completely clueless. A chance meeting between Montgomery and Dyson opened up
the possibilities of very unlikely connections between RH and quantum physics, through random
matrices. Thus, the ingredient of randomness that might be relevant to RH can not be totally ruled
out, even though we argued that the quantum physics connection was artificial, probabilistically
not rigorous and has remained fruitless. Does the Bayesian paradigm, with its solid and coherent
foundation, stand a chance?

To explore the possibilities, let us first consider another equivalent statement of the RH, this time
in terms of an infinite series involving the Möbius function (1). Consider the following Dirichlet
series for the Möbius function:

M(s) =
∞∑

n=1

µ(n)

ns
. (5)

It is known that the series diverges and converges for the real parts of s being less than or equal
to 1/2 and greater than or equal to 1, respectively. Convergence of M(s) for all s with real part
between 1/2 and 1, is equivalent to RH.

If it is at all possible to characterize convergence and divergence of the infinite series in Bayesian
terms, then this would of course characterize RH. Moreover, it the Bayesian characterization could
lead to useful inference regarding convergence and divergence of (5), then that could count as
substantial evidence, either in favour of, or against RH. In this regard, note that even if for a single
real value s between 1/2 and 1, M(s) diverges, then RH must be false.

5.1 The motivation for Bayesian characterization

It is interesting to note that the key idea of Bayesian characterization emerged as a response to
a simple curiosity of Professor Sucharita Roy, with regard to infinite series, with no connection
whatsoever with RH. Professor Roy, the head of the Department of Mathematics at St. Xavier’s
College, Kolkata, noted with dismay, perhaps like many other mathematics teachers, that although
determination of convergence, divergence or oscillation of infinite series is a much-studied problem
in classical mathematics, unfortunately there does not yet seem to exist any universal test that
can provide conclusive answers regarding convergence of most infinite series. This issue kept
preventing her from answering relevant questions from her students regarding series convergence.
Hearing of the powerful Bayesian paradigm from some of her (over-enthusiastic!) colleagues as the
panacea to all problems, she was left wondering about answering questions of series convergence by
surrendering to the Bayesian power. Her PhD supervisor, a Bayesian, considering this an innocuous
banter, did not take it seriously at the first thought. However, importance of the banter dawned
on him with an afterthought. . .
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5.2 The Bayesian characterization in a nutshell

The Bayesian characterization approach of Professor Roy attempts to provide conclusive answers
to the question of series convergence even where all the existing tests fail. The key philosophy
here is to embed the deterministic problem of classical mathematics in a stochastic framework,
with a notion of probability of convergence of the series, on which an appropriate prior probability
distribution is assigned. The data is composed of the partial sums of the infinite series. Specifically,
a recursive Bayesian technique is developed, where posterior distributions of the probability of
series convergence at successive stages of the partial sums associated with the infinite series are
constructed. Roughly, convergence of the recursive posteriors to 1 or 0 as the number of stages is
taken to infinity, is equivalent to convergence or divergence, respectively, of the underlying series!

6 Evidence against RH through Bayesian characterization

To the great surprise of Professor Roy and her supervisor, the Bayesian characterization yielded re-
sults that provided strong evidence against RH. Specifically, for real values in the interval (0.5, 0.72),
the recursive posterior distributions exhibited convergence to zero, as the number of stages are
grown sufficiently large. Professor Roy has also extended the Bayesian theory to encompasses infi-
nite series with finite as well as countably infinite number of limit points. The multiple limit point
theory for investigation of RH validity provided identical results of evidence against RH. Although
these results are by no means proof that RH is false (as they are based on a quite large, but finite
number of recursive stages), they have definitely strengthened our belief that the conjecture cannot
be supported.

7 Littlewood’s result and the S function: further reasons to
question RH

If most of the mathematicians of all ages believe in the truth of RH, this must be due to the sheer
weight of evidence gained by numerical computation of the non-trivial zeros of the zeta function.

As unlikely it may sound, the first computations of zeros were performed by Riemann himself, in
the context of his 1859 paper. Although Riemann did not bother to publish these computations,
they were underneath the basis of his celebrated conjecture. Siegel, through dedicated study of
Riemann’s notes, was finally able to lay his hands on the ingenious computational method of
Riemann, which was published in the 1930s and came to be known as the Riemann-Siegel formula.
This was to form the basis of large scale computations of the zeta function.

Since 1859, a very large number of non-trivial zeta zeros have been computed by various researchers
around the world. In particular, in the year 2004, X. Gourdon computed 1012 non-trivial zeros.
In all the cases, the zeros fell comfortably on the critical line. Andrew Odlyzko also computed the
highest non-trivial zero of the zeta function known to date, the 10, 000, 000, 000, 000, 000, 010, 000-
th, which turned out to be at argument 1

2 + 1, 370, 919, 909, 931, 995, 309, 568.33539i, where i =√
−1.

All the above computational results seem to point towards validity of RH. But that such computa-
tional evidences can be rather weak can be illustrated by a conjecture regarding the prime counting
function and its approximation, the Li function. All numerical computations had indicated that
Li(N) > π(N) for all positive integers N , and almost all mathematicians, including both Gauss
and Riemann believed in the truth of the conjecture. However, John Edensor Littlewood proved
in 1912 that the inequality fails for some N . In 1914 he further proved that the failure occurs for
infinitely many N . In 2000 Carter Bays and Richard Hudson showed that failures occur in the
vicinity of 1.39822×10316! They further gave some reasons for thinking that these may be the first
violations of the conjectured inequality. Indeed, even modern computing power is nowhere near
the first violation, and hence no direct computational evidence could have uncovered the truth of
the conjecture that Littlewood eventually proved to be false.
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It is thus conceivable that to refute RH, we might need computational power that can not be
achieved even in very far distant future! To elucidate further, note that the zeta function can be
decomposed into two parts, one of which is the so-called S-function. Even when the imaginary
part of a root is of the order 1023, S lies between −1 and 1. RH runs the risk of getting into trouble
if S rises to more than 100. Since it has been proved by Atle Selberg in 1946 that S is unbounded,
eventually S must exceed any given number. Even for S around 100, the imaginary part must be
around 1010

10,000

! This lies far beyond the reach of any imaginable computing power in even very
distant future, to generate a counter-example of RH. Till then, ignorance may be bliss for most of
the mathematicians around the world!

8 The non-believers Turing and Littlewood

Among a few great mathematicians who doubted RH were Alan Turing and Littlewood. Sur-
prisingly for Littlewood, it is not his result on refutation of Li(N) > π(N), or for that matter,
the almost unfathomably large upper bound below which the inequality is violated, a body of

research initiated by his own student Samuel Skewes (his upper bound was ee
e79

!), that made him
a non-believer. Although Skewes assumed RH to be true for his proof, subsequent researchers, for
example, Bays and Hudson, did not assume so. According to Littlewood, “A long-open conjecture
in analysis generally turns out to be false. A long-open conjecture in algebra generally turns out
to be true.” More aptly, it is generally held that Littlewood’s inability to prove RH led him to
state that it is false (grapes are sour!).

It is Turing’s stand that is more interesting. Although it is not known what made him a non-
believer, but by the time he was 26 years old (1937), he was convinced that RH was false and
set out to construct a counter example by generating a zero off the critical line. For the purpose
he conceived the idea of building a mechanical computing device (“zeta function machine”), and
applied to the Royal Society for a grant to cover the cost. He himself cut some gear wheels at the
engineering department of King’s College, Cambridge, where he was lecturing. Unfortunately, in
1939 World War II broke out and Turings’s work abruptly came to an end. Given the uncanny
insights Turing possessed, there was a fair chance that he could indeed produce a counter example
had he got the opportunity!

9 Conclusion

So, what is the chance that RH is correct? We hope that the reader has already begun to believe
that it is false. . . Dear Professor Hilbert, would you also change your mind?
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Unity in mathematics has been invaded by various issues like: pure mathematics vs
applied mathematics, discrete mathematics vs continuous mathematics, existential vs con-
structive mathematics. There are numerous reasons behind these, ranging from socio-
cultural reasons to availability of financial aids. However, irrespective of the reason, these
have some serious consequences. These divisions are bottleneck to the advancement of
mathematics, as a whole.

In this article, I intend to point out one such division which I have experienced in
my mathematical career so far and explain why this is detrimental to mathematics. I am
talking about the cold war between pure mathematics and use of computer programming.

In general, due to the nature of applicability, the applied mathematicians use computer
programming and simulation more often than their purist counterparts. However, the
shocking part is that there is a taboo about using or learning computer programming
among pure mathematicians. I have heard a lot of pure mathematicians taking pride in
not availing the help of programming languages in their work. Even, Sir Andrew Wiles was
quoted to say “I never use a computer”. Of course, there is no harm in not using computers
for programming. However, having a stigma about it just for the sake of establishing
mathematical superiority is pointless. Being able to write a program to test conjectures or
just try to see what is happening in a problem is certainly an asset. Let’s talk about some
concrete examples:

• The notorious prime generating polynomial f(n) = n2+n+41 yields prime numbers
for 0 ≤ n < 40. However f(40) = 1681 = 412 is not a prime. Now, suppose you
are not aware of this result and have a hunch that f(n) is a prime for all values of
n. But, you are not able to prove it. An obvious way is to check the validity of the
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statement for small values of n. There are two ways to do it, either by hand or by
using a programming language. Now, just estimate the amount of time that you can
save if you use the later method. One can argue that it may take some more time to
do it by hand, but eventually we will reach the same conclusion. But imagine if the
first value of n for which the statement fails is large, say ∼= 105. Then in the worst
case (without using computer), it may happen that you stick to your hunch that the
statement is true and you waste much of your time in trying to prove it.

• Part of the problem to starting math research is that you have no clue what problem
to solve. You don’t just sit at your desk and wonder, “What theorem should I
prove today?” In order to gain a sense for what theorems I want to prove, I always
investigate problems on the computer in whatever way I can. Even plotting the
curve of a continuous function or testing the validity of a conjecture or theorem
using computer programming can provide you a lot of insight about the solution or
proof of a problem.

• When it comes to teaching or demonstrating, programming and automation can
be used to a large extent e.g., curve plotting, constructing examples and counter
examples. One great example of this can be demonstrating uniform convergence of
sequence of functions with the help of automation.

This superiority complex among pure mathematicians for not depending upon comput-
ers is prevalent, in different extent, almost in every part of the globe. And sadly, they
are propagating this among their students. My intention behind writing this article is to
request the readers, especially young minds, to come out of this taboo. For, even if Sachin
Tendulkar didn’t bowl, he would have been equally famous. But his bowling skills have
won many matches for India.
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viduality.”

                        -Richard Courant



1616

MATHEMATICS OF STELLAR MATHEMATICS OF STELLAR 
EVOLUTION : LANE-EMDEN  EVOLUTION : LANE-EMDEN  

EQUATIONEQUATION

Dipanjan MitraDipanjan Mitra
M.Sc AstrophysicsM.Sc Astrophysics

Cardiff University, UKCardiff University, UK

MATHEMATICS OF STELLAR EVOLUTION:
LANE-EMDEN EQUATION

Dipanjan Mitra, M.Sc Astrophysics, Cardiff University, UK
E-mail : dipanmitra1@gmail.com

30th August 2021

The evolution of a star is considered to be a quasi-static process, in which the composition
changes at a slow rate, thereby, allowing the star to maintain hydro-static equilibrium and
thermal equilibrium as well. In this article, we shall see the mathematical modelling of the
equilibrium structure of a star of a given composition. The structure of a star is given by the
solution obtained by solving a set of differential equations known as the stellar structure
equations. These differential equations are formulated either in terms of radius (r) or mass
(m). Let us derive the differential equations governing stellar evolution.

r

r
+
dr

m

dm

Figure 1: A diagrammatic representation of mass element in a star

The energy equation

Consider a small element of mass dm within a star which is at a constant temperature,
density and composition. Assuming spherical symmetry, such an element is chosen as a thin
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spherical shell of inner radius r and outer radius r + dr. So, its volume is given by

dV = 4πr2dr (1)

and mass is
dm = ρdV = 4πr2ρdr (2)

We denote internal energy per unit mass and pressure as u and P respectively. If δQ is the
amount of heat absorbed (δQ > 0) or heat released (δQ < 0) by the mass element and δW is
the work done during the time interval δt, then according to first law of thermodynamics, we
get

δ(udm) = dmδu = δQ+ δW (3)

As due to conservation of mass, dm is constant, we get

δW = −PδdV = −Pδ

(
dV

dm
dm

)
= −Pδ

(
1

ρ

)
dm (4)

The sources of heat of the mass element are:

(a) nuclear energy release

(b) heat flux balance

Let q be the rate of nuclear energy release per unit mass and F (m) be the heat flow
perpendicular to the surface. Then,

δQ = qdmδt+ F (m)δt− F (m+ dm)δt (5)

But, F (m+ dm) = F (m) + ∂F
∂m

dm. So,

δQ =

(
q − ∂F

∂m

)
dmδt (6)

Consequently, we get from equation (3)

dmδu+ Pδ

(
1

ρ

)
dm =

(
q − ∂F

∂m

)
dmδt (7)

In the limit, δt −→ 0, we get

u̇+ P
˙(
1

ρ

)
= q − ∂F

∂m
(8)

In thermal equilibrium, the left hand side of the equation vanishes, and we get

dF

dm
= q (9)

The equation of motion

Consider a small cylindrical volume element within the star, with axis length dr and cross-
sectional area dS. Let the denisty within the elemnt be ρ and mass be ∆m. Then, we have

∆m = ρdrdS (10)

The forces acting on the element are
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(a) the gravitational force exerted by the sphere interior to r

(b) force due to the gas pressure around the element

The equation of motion is

∆m
∂2r

∂t2
= −Gm∆m

r2
+ P (r)dS − P (r + dr)dS (11)

But, P (r + dr) = P (r) + ∂P
∂r
dr. So,

∆m
∂2r

∂t2
= −Gm∆m

r2
− ∂P

∂r

∆m

ρ
(12)

Dividing by ∆m, we get
∂2r

∂t2
= −Gm

r2
− ∂P

∂r

1

ρ
(13)

In hydrostatic equilibrium, the acceleration is negligible and gravitational force and pressure
force balances each other, giving

dP

dr
= −ρ

Gm

r2
(14)

Radiative transfer

ρ, T, κ

dr

H H − dH

A B

Figure 2: Radiative transfer through a slab

Let us consider a slab of thickness dr and density ρ. Radiation flux H incident at A emerges
from B after losing dH amount of flux. The amount of absorbed flux is given by

dH = −κHρdr (15)

where κ is the opacity coefficient. The absorption of radiation energy by the slab involves
an amount of momentum. The momentum absorbed in unit time is |dH|

c
. The increase in

momentum is the difference in radiation pressure. So, we have

κHρ

c
= −dPrad

dr
(16)
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Radiation pressure is given by

Prad =
1

3
aT 4 (17)

where a is the radiation constant. Then

dPrad

dr
=

4

c
aT 3dT

dr
(18)

Therefore,
κHρ

c
= −4

c
aT 3dT

dr
=⇒ H = −4acT 3

3κρ

dT

dr
(19)

The total flux passing the spherical surface of radius r is given by

F = 4πr2H = −4πr2
4acT 3

3κρ

dT

dr
(20)

So, we get
dT

dr
= − 3

4ac

κρ

T 3

F

4πr2
(21)

Hence, the stellar equations are either

dP

dr
= −ρ

Gm

r2
(22)

dm

dr
= 4πr2ρ (23)

dT

dr
= − 3

4ac

κρ

T 3

F

4πr2
(24)

dF

dr
= 4πr2ρq (25)

or in the form (dm = 4πr2dr)

dP

dm
= −ρ

Gm

4πr4
(26)

dr

dm
=

1

4πr2ρ
(27)

dT

dm
= − 3

4ac

κρ

T 3

F

(4πr2)2
(28)

dF

dm
= q (29)

where ρ, P , T , F are density, pressure, temperature and flux density of the star respectively.
The constants G, κ and a are universal gravitational constant, opacity coefficient and radiation
constant respectively. Here, q is the energy released per unit mass.

The first equation is known as the equation of hydro-static equilibrium, the second is the
continuity equation, the third being the radiative transfer equation (provided the main energy
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transfer takes place by radiative transfer) and the fourth equation is the thermal-equilibrium
equation. The above set of differential equations is supplemented by the relation of total
pressure

P =
R
µ1

ρT + Pe +
1

3
aT 4 (30)

and the relation of κ and q as

κ = κ0ρ
aT b (31)

q = q0ρ
mT n (32)

Integration of the differential equations give the distribution of T , ρ, m (or r) and F . The
model that I am going to describe here is known as the polytropic model. This model is
called so because of the form of the equation of state considered here. We take the polytropic
equation of state given by

P = Kργ (33)

where K and γ are constants. γ is related to the polytropic index n by the relation γ = 1+ 1
n
.

Multiplying the hydrostatic equilibrium equation by r2

ρ
and differentiating with respect to

r, we get
d

dr

(
r2

ρ

dP

dr

)
= −G

dm

dr
(34)

Substituting equation (23) above, we get

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (35)

Replacing P by ρ using the polytropic equation of state, we get

(n+ 1)K

4πGn

1

r2
d

dr

(
r2

ρ
n−1
n

dρ

dr

)
= −ρ (36)

The solution to the above equation given by ρ(r) with 0 ≤ r ≤ R is called a polytrope.
To completely determine ρ, we need two boundary conditions, given by ρ = 0 at r = R (at
surface) and dρ

dr
= 0 at r = 0 (at centre) due to hydrostatic equilibrium (dP

dr
= 0).

Let us define a dimensionless variable θ with 0 ≤ θ ≤ 1 as

ρ = ρcθ
n (37)

where ρc is the critical density.
Substituting in equation (36), we get

[
(n+ 1)K

4πGρ
n−1
n

c

]
1

r2
d

dr

(
r2
dθ

dr

)
= −θn (38)

Let us take

[
(n+1)K

4πGρ
n−1
n

c

]
= α2 and replace r by another dimensionless variable ξ as r = αξ,

to get
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1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn (39)

This equation is known as the famous Lane-Emden equation of index n subject to the
boundary conditions θ = 1 and dθ

dξ
= 0 at ξ = 0. The outer boundary (the surface) is the first

location where ρ = 0, or equivalently θ(ξ) = 0. That location is called ξ1. The formal solution
may have additional zeros at larger values of ξ, but ξ > ξ1 is not relevant for stellar models.
The solution of the Lane-Emden equation for n = 0 to n = 6 is given in Fig (3).

Figure 3: Solutions θ to the Lane-Emden equation for various values of n. The black dots
represent the first zeros which corresponds to the stellar radius.

For n = 0, the density of the solution as a function of radius is constant, ρ(r) = ρc. This
is the solution for a constant density incompressible sphere. n = 1 to 1.5 approximates a
fully convective star, i.e. a very cool late-type star such as a white dwarf. For n = 3 there
is no analytical solution but we have an approximated solution known as the Eddington
approximation which is useful as it corresponds to a fully radiative star, which is a useful
approximation for the Sun. White dwarfs and neutron stars can be approximated as fully

6
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degenerate stars, with the lower mass white dwarfs being approximated as a case of non-
relativistic degeneracy, and the higher mass white dwarfs and all neutron stars are cases of
fully relativistic degeneracy. We thus can represent their internal structure by polytropes with
n = 1.5 for the non-relativistic case, and n = 3 for the relativistic case. For n > 5, the binding
energy is positive, and hence such a polytrope cannot represent a real star.

7

           False positive paradox describes situations where there are more false 
positive test results than true positives. For example, 50 of 1,000 people test 
positive for an infection, but only 10 have the infection, meaning 40 tests 
were false positives. The probability of a positive test result is determined not 
only by the accuracy of the test but also by the characteristics of the sampled 
population. When the prevalence, the proportion of those who have a given 
condition, is lower than the test’s false positive rate, even tests that have a 
very low chance of giving a false positive in an individual case will give more 
false than true positives overall. The paradox surprises most people.It is es-
pecially counter-intuitive when interpreting a positive result in a test on a 
low-prevalence population after having dealt with positive results drawn from 
a high-prevalence population. If the false positive rate of the test is higher 
than the
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Love is the customary word used in literature. Most of the songs and poetries 
of Tagore are based on love. In cinematography too, most of the stories are 
based on love especially romantic love viz. DDLJ, Devdas, Sat Panke Bandha, 
Roman holiday, Titanic, etc is an unending list for this. Students in the age 
group of 15-23 discuss mostly about love and love life. So, we all know it is a 
set of emotions, but the question is that whether we can explain it from 
mathematical point of view? Strogatz presented a brief discussion on love affairs 
and several related mathematical exercises (1994) essentially the same model 
was described earlier by Rapport (1960) and studied by Radzicki (1993), and 
several other researchers studied this including different complexity. Here we 
will discuss the simplest linear model and its interpretation and try to confirm 
the same behaviour from our experience. 

As we all know that the most popular lovers are Romeo and Juliet. Here also 
we are using the same names. 

Let, R(t) = Romeo’s love / hate for Juliet at time ‘t’, and 

J(t) = Juliet’s love / hate for Romeo at time ‘t’ (where, positive value of R 
and J signify Love and negative value signifies Hate) 

The rate of increase of their love is given by 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑏𝑏  &  𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑑𝑑 + 𝑑𝑑𝑏𝑏 

Here ‘a’ and ‘b’ characterizes Romeo’s romantic style and ‘c’, and ‘d’ 
characterizes the same of Juliet. The parameter ‘a’ describes the extent to which 
Romeo is encouraged by his own feeling and ‘b’ denotes the extent to which he 
is encouraged by Juliet’s feeling. The parameters ‘c’ and ‘d’ have the equivalent 
significances from the perspective of Juliet. These four parameters a, b, c, d can 
be positive or negative. We can write the expression as: 

 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑

𝑏𝑏 ) = (𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑) (𝑑𝑑

𝑏𝑏 ) 

 

Hence, if we consider 𝑋𝑋 = (𝑑𝑑
𝑏𝑏 ) , 𝐴𝐴 = (𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑) , then equation can be written as: 

 �̇�𝑋 = 𝐴𝐴𝑋𝑋……. (1) 

Types of Lovers and various cases: 

From the perspective of Romeo four different styles of romance can be exhibited 
by him which are given below: 

(i) Eager beaver: a > 0, b > 0  
(ii) Narcissistic nerd: a > 0, b < 0 
(iii)  Cautious (or, secure) lover: a < 0, b > 0  
(iv)  Hermit: a < 0, b < 0. 

 

The same format of styles can be generated from Juliet involving the parameters 
‘c’ and ‘d’ respectively. Later it has been discussed in detail about what happens 
in the 4 different cases when various kinds of lovers meet each other and what 
the outcome is. We have taken 6 instances for all the respective cases and tried 
to reach to a conclusion.  
 
The six instances are:  
I. Both love each other R, J > 0. 
II. Both hate each other R, J < 0. 
III. Romeo loves, Juliet hates and love > hate i.e., |R|>|J|  
IV. Romeo hates, Juliet loves and love > hate i.e., |R|<|J| 
V. Romeo loves, Juliet hates and love < hate i.e., |R|<|J| 
VI. Romeo hates, Juliet loves and love < hate i.e.  |R|>|J| 
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So, we reached at two-dimensional Linear Dynamical system. Before going to 
discuss further we find the solution of equation (1) qualitatively. 

Solution of AX = 0 is called critical point (CP) or equilibrium point. So, if X* 
is CP then    AX*=0   i.e.   at    X=X* we have �̇�𝑋=0. So, it will not move if 
the particle is at CP. Now we will solve Equation (1) by eigenvalue eigenvector 
method. We can find eigenvalues by solving characteristic equation of A, i.e.,  
|𝐴𝐴 − 𝜆𝜆𝜆𝜆| = 0.  

The characteristic equation |A- 𝜆𝜆I|=0  is given by: 

 𝜆𝜆2–(a+d) 𝜆𝜆+(ad-bc)=0, 

Or, 𝜆𝜆2 -T 𝜆𝜆+Δ=0 ,where T=Tr(A)=a+d & Δ=|A|=ad-bc.  

So, eigenvalues are given by 𝜆𝜆1,2 = 𝑇𝑇±√𝑇𝑇2−4Δ
2   

Case(1): 𝑇𝑇2 > 4∆ . Eigenvaues are real and ditinct . 

If 𝜆𝜆1, 𝜆𝜆2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝑎𝑎𝑒𝑒𝑎𝑎 𝑒𝑒1⃗⃗  ⃗ , 𝑒𝑒2⃗⃗⃗⃗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝑏𝑏𝑏𝑏 𝐴𝐴𝑒𝑒 = 𝜆𝜆𝑒𝑒  , 𝑒𝑒 ≠ 0. 

Then solution of equation (1) is given by 𝑋𝑋(𝑒𝑒) = 𝑒𝑒1𝑒𝑒1⃗⃗  ⃗𝑎𝑎𝜆𝜆1𝑡𝑡 + 𝑒𝑒2𝑒𝑒2⃗⃗⃗⃗ 𝑎𝑎𝜆𝜆2𝑡𝑡 for some 
constant 𝑒𝑒1 𝑎𝑎𝑒𝑒𝑎𝑎 𝑒𝑒2. 

Case(2): 𝑇𝑇2 < 4∆ . Eigenvaues are complex conjugate. 

If 𝜆𝜆1,2 = 𝜆𝜆 ± 𝑒𝑒𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝑎𝑎𝑒𝑒𝑎𝑎 𝑒𝑒 = �⃗�𝑒 ± 𝑒𝑒�⃗⃗�𝑤   are respective eigenvector, 
then X(t) is a linear combination of X1(t) and X2(t) ,where  

𝑋𝑋1(𝑒𝑒) = 𝑎𝑎𝜆𝜆𝑡𝑡(�⃗�𝑒 cos 𝑖𝑖𝑒𝑒 − �⃗⃗�𝑤 sin 𝑖𝑖𝑒𝑒)  &   𝑋𝑋2(𝑒𝑒) = 𝑎𝑎𝜆𝜆𝑡𝑡(�⃗�𝑒 sin 𝑖𝑖𝑒𝑒 + �⃗⃗�𝑤  𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑒𝑒) 
Case(3): 𝑇𝑇2 = 4∆ . Eigenvaues are real and equal . Here two subcases will arise 
viz. geometric multiplicity may be 1 or 2. For 2 we will take it like case (1) but 
for 1 problem arises since we get only one eigenvector. In this case we can use 
generalised eigenvector to get  its Jordan canonical form. (We will discuss this 
case through an example) 

We are dicussing the cases through example. consider 𝑋𝑋 = (𝑅𝑅𝐽𝐽 ) and  �̇�𝑋 = 𝐴𝐴𝑋𝑋 

Let 𝐴𝐴 = (𝜆𝜆1 0
0 𝜆𝜆2

) . Here actually we are getting decoupled equation. 

�̇�𝑅 = 𝜆𝜆1𝑅𝑅  𝑎𝑎𝑒𝑒𝑎𝑎 𝐽𝐽̇ = 𝜆𝜆2𝐽𝐽  which can be solved separately but we use general method. 

Clearly eigenvalues are diagonal elements 𝜆𝜆1, 𝜆𝜆2 𝑎𝑎𝑒𝑒𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 (10) ,

(01)  𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏.So solution is 𝑋𝑋 = 𝑒𝑒1𝑎𝑎𝜆𝜆1𝑡𝑡 (10) + 𝑒𝑒2𝑎𝑎𝜆𝜆2𝑡𝑡 (01) . So 𝑅𝑅 = 𝑒𝑒1𝑎𝑎𝜆𝜆1𝑡𝑡  𝑎𝑎𝑒𝑒𝑎𝑎 𝐽𝐽 =
𝑒𝑒2𝑎𝑎𝜆𝜆2𝑡𝑡 
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Example (1): Let 𝜆𝜆1 = 1  𝑎𝑎𝑎𝑎𝑎𝑎  𝜆𝜆2 = −1   𝑖𝑖. 𝑒𝑒.  𝐴𝐴 = (1 0
0 −1)   𝑆𝑆𝑆𝑆 𝑅𝑅 = 𝑐𝑐1𝑒𝑒𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 =

𝑐𝑐2𝑒𝑒−𝑡𝑡.  

If we plot it in R-J Graph  then clearly we get two straight line solution 
corresponding to  

𝑐𝑐1 = 0 , 𝑐𝑐2 ≠ 0  ⟹ 𝑅𝑅 = 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 𝑐𝑐2𝑒𝑒−𝑡𝑡 ⟹ 𝐽𝐽 → 0 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞ 𝑖𝑖. 𝑒𝑒 .  𝐽𝐽 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 . 
Similarly, 

 𝑐𝑐1 ≠ 0  , 𝑐𝑐2 = 0 ⟹ 𝑅𝑅 = 𝑐𝑐1𝑒𝑒𝑡𝑡  ⟹ 𝑅𝑅 → ± ∞  𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞ 𝑎𝑎𝑐𝑐𝑐𝑐𝑆𝑆𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎  𝑐𝑐1 𝑖𝑖𝑎𝑎 + 𝑆𝑆𝑎𝑎 − 

𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 0 𝑖𝑖. 𝑒𝑒 .  𝑅𝑅  𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 . Direction is given as increasing t. 

 𝐼𝐼𝐼𝐼 𝑐𝑐1 ≠ 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2 ≠ 0 𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝑅𝑅𝐽𝐽 = 𝑐𝑐1𝑐𝑐2  which is a rectangular hyperbola. Using 
this we can draw the phase trajectory. Direction should match with straight line 
trajectory. 

 
                            Fig 1                                                                             
Fig  2 

Example (2): Let 𝜆𝜆1 = −1  𝑎𝑎𝑎𝑎𝑎𝑎  𝜆𝜆2 = −2   𝑖𝑖. 𝑒𝑒.  𝐴𝐴 = (−1 0
0 −2) . 

 𝑆𝑆𝑆𝑆, 𝑅𝑅 = 𝑐𝑐1𝑒𝑒−𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 𝑐𝑐2𝑒𝑒−2𝑡𝑡. If we plot it in R-J Graph, then clearly we get 
two straight line solution corresponding to  

𝑐𝑐1 = 0 , 𝑐𝑐2 ≠ 0  ⟹ 𝑅𝑅 = 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 𝑐𝑐2𝑒𝑒−2𝑡𝑡 ⟹ 𝐽𝐽 → 0 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞ 𝑖𝑖. 𝑒𝑒 .  𝐽𝐽 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 . 
Similarly,  

 𝑐𝑐1 ≠ 0  , 𝑐𝑐2 = 0 ⟹ 𝑅𝑅 = 𝑐𝑐1𝑒𝑒−𝑡𝑡  ⟹ 𝑅𝑅 →  0  𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 0  𝑖𝑖. 𝑒𝑒 .  𝑅𝑅  𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 .  

 𝐼𝐼𝐼𝐼 𝑐𝑐1 ≠ 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2 ≠ 0 𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝑅𝑅2 = 𝑐𝑐12

𝑐𝑐2
𝐽𝐽 which is a parabola with axis as J axis 

(along greater eigenvalue ) and tangent at Critical point as R axis (along 
numerically lesser eigenvalue). Using this we can draw the phase trajectory. 
Direction should match with straight line trajectory. 
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Similarly, for 𝐴𝐴 = (1 0
0 2) phase diagram will be same as fig 2 but the direction 

will be opposite. 

 

Let us take a matrix which is not the diagonal matrix.  

𝐴𝐴 = (1 3
1 −1).  

Here characteristics equation is 𝜆𝜆2 − 4 = 0; 𝑖𝑖. 𝑒𝑒. 𝜆𝜆 = ±2. Eigenpairs can be found 

as: [2, (3
1)]  𝑎𝑎𝑎𝑎𝑎𝑎  [−2, ( 1

−1)].  

So, the solution is 𝑋𝑋 = 𝑐𝑐1𝑒𝑒2𝑡𝑡 (3
1) + 𝑐𝑐2𝑒𝑒−2𝑡𝑡 ( 1

−1).  

Again, 𝑐𝑐1 = 0 , 𝑐𝑐2 ≠ 0  ⟹ 𝑅𝑅 = 𝑐𝑐2𝑒𝑒−2𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = −𝑐𝑐2𝑒𝑒−2𝑡𝑡. Hence straight-line 
solution is given by 𝑅𝑅 + 𝐽𝐽 = 0 line, direction towards the origin.  

Similarly, 𝑐𝑐1 ≠ 0  , 𝑐𝑐2 = 0 ⟹ 𝑅𝑅 = 3𝑐𝑐1𝑒𝑒2𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = 𝑐𝑐1𝑒𝑒2𝑡𝑡 ⟹ 𝑅𝑅 = 3𝐽𝐽 line. Direction 
away from origin (CP). 

Other trajectories are accordingly. See fig 3: 

 
Now we can analyse these three figures:  

If our starting point is in first quadrant i.e., R > 0 and J > 0 in fig 1 then J is 
decreasing and R increasing. Ultimately, as 𝑡𝑡 → ∞ , 𝐽𝐽 → 0 & 𝑅𝑅 → +∞ , which 
means it is a one-sided love from Romeo, whereas in fig 2 both 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 →
0 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞ that means it is practically a no love no hate relationships or a cold 
relation. But in fig 3 if starting point is above R=3J line in the 1st quadrant 
then as 𝑡𝑡 → ∞ , 𝑏𝑏𝑏𝑏𝑡𝑡ℎ  𝑅𝑅 & 𝐽𝐽 → +∞ could be called a love fest.  
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It may be noted interestingly that depending on the starting point say in 2nd 
quadrant left of R+J=0 or right of the line fate changes absolutely may be a 
love fest or may be ultimate hate as 𝑡𝑡 → ∞ , 𝑏𝑏𝑏𝑏𝑡𝑡ℎ  𝑅𝑅 & 𝐽𝐽 → −∞ . 

So, if we study the matrix and their eigenpairs we can conclude the ultimate 
status of their love relationship depending on their initial condition. 

Let us consider the case where eigenvalues are complex conjugate: 

Let 𝐴𝐴 = ( 0 𝛽𝛽
−𝛽𝛽 0) . Here eigenvalues are𝜆𝜆 = ±𝑖𝑖𝛽𝛽 and eigenvector corresponding 

to  𝑖𝑖𝛽𝛽 is 

 𝑉𝑉 = (𝑣𝑣11
𝑣𝑣21

)  𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝐴𝐴 − 𝑖𝑖𝛽𝛽𝑖𝑖)𝑉𝑉 = 0     𝑔𝑔𝑖𝑖𝑣𝑣𝑒𝑒𝑔𝑔 − 𝑖𝑖𝛽𝛽𝑣𝑣11 + 𝛽𝛽𝑣𝑣12 = 0 ⇒ 𝑣𝑣12 = 𝑖𝑖𝑣𝑣11  ,  

𝑂𝑂𝑂𝑂 𝑉𝑉 = (1
𝑖𝑖 )  can be taken as eigen vector. So, solution of �̇�𝑋 = 𝐴𝐴𝑋𝑋  𝑖𝑖𝑔𝑔 𝑋𝑋 =

 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (1
𝑖𝑖 )  𝑏𝑏𝑂𝑂 

 𝑋𝑋 = (𝑐𝑐𝑏𝑏𝑔𝑔𝛽𝛽𝑡𝑡 + 𝑖𝑖 sin 𝛽𝛽𝑡𝑡) (1
𝑖𝑖 ) = ( cos 𝛽𝛽𝑡𝑡 + 𝑖𝑖 sin 𝛽𝛽𝑡𝑡

− sin 𝛽𝛽𝑡𝑡 + 𝑖𝑖 cos 𝛽𝛽 𝑡𝑡) = ( cos 𝛽𝛽𝑡𝑡
− sin 𝛽𝛽 𝑡𝑡) + 𝑖𝑖 ( sin 𝛽𝛽𝑡𝑡

cos 𝛽𝛽 𝑡𝑡).  

So,  ( cos 𝛽𝛽𝑡𝑡
− sin 𝛽𝛽𝑡𝑡) , ( sin 𝛽𝛽𝑡𝑡

cos 𝛽𝛽 𝑡𝑡) are two independent solutions. Hence complete 

solution is  

 𝑋𝑋 = 𝑐𝑐1 ( cos 𝛽𝛽 𝑡𝑡
− sin 𝛽𝛽 𝑡𝑡) + 𝑐𝑐2  (sin 𝛽𝛽𝑡𝑡

cos 𝛽𝛽𝑡𝑡) .  

Here we will not get any straight-line solution but, 𝑐𝑐1 ≠ 0  , 𝑐𝑐2 = 0 ⟹ 𝑅𝑅 =
𝑐𝑐1 cos 𝛽𝛽𝑡𝑡   𝑎𝑎𝑒𝑒𝑎𝑎 𝐽𝐽 = −𝑐𝑐1 sin 𝛽𝛽𝑡𝑡 ⟹ 𝑅𝑅2 + 𝐽𝐽2 = 𝑐𝑐1

2  and  𝑐𝑐1 = 0  , 𝑐𝑐2 ≠ 0 ⟹ 𝑅𝑅 =
𝑐𝑐2 sin 𝛽𝛽𝑡𝑡   𝑎𝑎𝑒𝑒𝑎𝑎 𝐽𝐽 = 𝑐𝑐2 cos 𝛽𝛽𝑡𝑡 ⟹ 𝑅𝑅2 + 𝐽𝐽2 = 𝑐𝑐2

2 .  

Both are circular solution.  

Phase plane diagram will look like fig 4. To get the anticlockwise direction we 
choose cleverly 𝑐𝑐1 > 0  , 𝛽𝛽 = 1 , 𝑡𝑡 = 0  ⇒ 𝑎𝑎 𝑝𝑝𝑏𝑏𝑖𝑖𝑒𝑒𝑡𝑡 (1,0)𝑏𝑏𝑒𝑒 𝑅𝑅 𝑎𝑎𝑎𝑎𝑖𝑖𝑔𝑔 𝑎𝑎𝑒𝑒𝑎𝑎 𝑡𝑡 = 𝜋𝜋

2  ⇒
𝑎𝑎 𝑝𝑝𝑏𝑏𝑖𝑖𝑒𝑒𝑡𝑡 (0, −1) on negative J axis. On increasing t it will from (1,0) to (0, -1) 
which is counter clockwise direction.  

Another example: 

𝐴𝐴 = ( 𝛼𝛼 𝛽𝛽
−𝛽𝛽 𝛼𝛼) , here  𝜆𝜆 = 𝛼𝛼 ± 𝑖𝑖𝛽𝛽 . Corresponding to 𝜆𝜆 = 𝛼𝛼 + 𝑖𝑖𝛽𝛽  let 𝑉𝑉 = (𝑣𝑣11

𝑣𝑣21
) be 

the eigenvector. Then (𝐴𝐴 − 𝜆𝜆𝑖𝑖)𝑉𝑉 = 0 ⇒ −𝑖𝑖𝛽𝛽𝑣𝑣11 + 𝛽𝛽𝑣𝑣21 = 0 ⇒ 𝑣𝑣21 = 𝑖𝑖𝑣𝑣11 ⇒ 𝑉𝑉 =
(1

𝑖𝑖 ) . 𝑆𝑆𝑏𝑏 
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 𝑋𝑋 =  𝑒𝑒(𝛼𝛼+𝑖𝑖𝑖𝑖)𝑡𝑡 (1
𝑖𝑖 ) , 𝑜𝑜𝑜𝑜 𝑋𝑋 = 𝑒𝑒𝛼𝛼𝑡𝑡(𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖 sin 𝑐𝑐𝑐𝑐) (1

𝑖𝑖 ) = 𝑒𝑒𝛼𝛼𝑡𝑡 ( cos 𝑐𝑐𝑐𝑐 + 𝑖𝑖 sin 𝑐𝑐𝑐𝑐
− sin 𝑐𝑐𝑐𝑐 + 𝑖𝑖 cos 𝑐𝑐 𝑐𝑐) 

= 𝑒𝑒𝛼𝛼𝑡𝑡 {( cos 𝑐𝑐𝑐𝑐
− sin 𝑐𝑐 𝑐𝑐) + 𝑖𝑖 ( sin 𝑐𝑐𝑐𝑐

cos 𝑐𝑐 𝑐𝑐)}.  

So,  𝑒𝑒𝛼𝛼𝑡𝑡 ( cos 𝑐𝑐𝑐𝑐
− sin 𝑐𝑐𝑐𝑐)    𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝛼𝛼𝑡𝑡 ( sin 𝑐𝑐𝑐𝑐

cos 𝑐𝑐 𝑐𝑐) are two independent solutions.  Hence 𝑋𝑋 =

𝑐𝑐1𝑒𝑒𝛼𝛼𝑡𝑡 ( cos 𝑐𝑐 𝑐𝑐
− sin 𝑐𝑐 𝑐𝑐) + 𝑐𝑐2𝑒𝑒𝛼𝛼𝑡𝑡  (sin 𝑐𝑐𝑐𝑐

cos 𝑐𝑐𝑐𝑐).  

To draw phase plane diagram let us take 𝑐𝑐1 ≠ 0  , 𝑐𝑐2 = 0 ⟹ 𝑅𝑅 =
𝑐𝑐1𝑒𝑒𝛼𝛼𝑡𝑡 cos 𝑐𝑐𝑐𝑐   𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽 = −𝑐𝑐1𝑒𝑒𝛼𝛼𝑡𝑡 sin 𝑐𝑐𝑐𝑐. 

⟹ 𝑅𝑅2 + 𝐽𝐽2 = 𝑐𝑐1
2𝑒𝑒2𝛼𝛼𝑡𝑡 which can be considered as a circular spiral with increasing 

radius 𝑐𝑐1𝑒𝑒𝛼𝛼𝑡𝑡 → ∞  𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝛼𝛼 > 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑜𝑜𝑜𝑜 𝛼𝛼 < 0, 𝑐𝑐1𝑒𝑒𝛼𝛼𝑡𝑡 → 0     𝑎𝑎𝑐𝑐 𝑐𝑐 → ∞    i.e., 
decreasing radius. 

Here four possible phase diagrams are there. 

If we analyse Fig 4 then clearly love of Romeo and Juliet will sinusoidal i.e., 
increase and decrease alternatively but never extinct or increased beyond 
boundaries (Natural ??) whereas in Fig 5 it will increase and decrease 
alternatively but increases beyond boundary if 𝛼𝛼 > 0  but ultimately dies out if 
𝛼𝛼 < 0  (Reality??).  

Finally, we take 𝐴𝐴 = (𝜆𝜆 1
0 𝜆𝜆) , this is the Jordan Canonical form where both the 

eigenvalues are 𝜆𝜆 and only one eigenvector we have, which is  (1
0) here. Here we 

solve the equation directly instead of using generalised eigenvector.  

Equations are �̇�𝑅 = 𝜆𝜆𝑅𝑅 + 𝐽𝐽  𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽̇ = 𝜆𝜆𝐽𝐽  which gives 𝐽𝐽 = 𝑐𝑐2𝑒𝑒𝜆𝜆𝑡𝑡  . Putting in the 
equation we get,  
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�̇�𝑅 = 𝜆𝜆𝑅𝑅 +  𝑐𝑐2𝑒𝑒𝜆𝜆𝜆𝜆 which is a linear equation with integrating factor= 𝑒𝑒−𝜆𝜆𝜆𝜆. Hence 
solution becomes 𝑅𝑅𝑒𝑒−𝜆𝜆𝜆𝜆 = 𝑐𝑐2𝑡𝑡 + 𝑐𝑐1 ⇒ 𝑅𝑅 = 𝑒𝑒𝜆𝜆𝜆𝜆(𝑐𝑐1 + 𝑐𝑐2𝑡𝑡)   &  𝐽𝐽 = 𝑐𝑐2𝑒𝑒𝜆𝜆𝜆𝜆.  

So, 𝑋𝑋 = 𝑐𝑐1𝑒𝑒𝜆𝜆𝜆𝜆 (1
0) + 𝑐𝑐2𝑒𝑒𝜆𝜆𝜆𝜆 (𝑡𝑡

1) . In fact, (1
0)  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑡𝑡

1) are generalised 
eigenvectors of A.  

Let us take 𝜆𝜆 = −1. Hence solution is given by 𝑋𝑋 = 𝑐𝑐1𝑒𝑒−𝜆𝜆 (1
0) + 𝑐𝑐2𝑒𝑒−𝜆𝜆 (𝑡𝑡

1).  

Then 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑑𝑑

𝑑𝑑−𝑑𝑑  . 

Phase portrait is given by: 

Observe that trajectories have a tangent perpendicular to R axis at a point on 
the line R=J. For 𝜆𝜆 > 0 direction of trajectory will be opposite. 

Hence to predict the fate of romantic love relationship, it depends on the matrix 
and its eigenpair along with initial values of R and J. In the long run, love for 
each other may increase without boundary or extinct. It may be that one be 
silent(constant) but other increases or extinct. If both the eigenvalues are 
negative and having negative real part, then certainly love will be extinct from 
both side in the long run which matches with our common experience. But if 
eigenvalues are positive then it could be love fest or absolutely hate from both 
side or absolute love from one side and absolute hate from the other side 
depending on their initial status. If eigenvalues are of opposite sign, then either 
it is an ultimate romance or absolute hate from both side. We know that most 
common dialogue between two lovers is like this: 

Romeo: I love you and Juliet: I love you too.  

Or 

Romeo: I love you; do you love me? and Juliet: Yes, for ever I love you. 
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From the above discussion, conclusion is that they should ask each other that: 
Can we make our love eigenvalue complex with positive real part ??(!!!). Because 
that is the only case where in the long run it will be a love fest, though some 
love-hate relationships are there in the short run whatever be the initial status. 

 

            
            The Daddy of Big Numbers(Rayo’s Number):Rayo’s num-
ber is a large number named after Mexican associate professor 
Agustín Rayo ,which has been claimed to be the largest (named) 
number.It was originally defined in a “big number duel” at MIT 
on 26 January 2007.The definition of Rayo’s number is a varia-
tion on the definition:The smallest number bigger than any finite 
number named by an expression in the language of first order 
set-theory with less than a googol (10^100) symbols.
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With the school day memories still lingering in the mind when a young 
student first encounters a strange object like Groups, he or she is sure to get 
disappointed or at least taken aback, thinking is it the same Mathematics I 
have studied? Or is it the one that I had yearned for or may be is it 
Mathematics at all? The more you try to dig into relating the school maths 
with college maths the more you get frustrated. However, its seen, the more 
you ignore and swallow like a quinine pill the strange or monstrous objects like 
groups, homomorphism, the better you understand and succeed. But does this 
answer the question, is school maths different from college maths? No, not at 
all. You bisected an angle in 8th standard or so. What about trisection. May 
be in college. But instead of trisecting angle you learn more about trisecting 
your own brain in Algebra, Analysis, and Metric spaces. Natural to ask why? I 
mean why Algebra and why not angle? The reason is you keep trying and 
keep on trying and ultimately after nearly wasting few days and plenty of 
pages you are at a loss. The reason is actually no one can trisect an angle with 
a non-calibrated ruler and compass.  

The first reason that strikes your mind is may be till now no one has been able 
to do it. But what is the guarantee that no one will be able to do. This idea is 
difficult to conceive. Am I God that I can say what will happen in future? But 
it is very simple notion you get confused because I am putting it in this way. 
Now I say this statement. Suppose you appear for the group action exam 
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which is 100 marks paper. I claim no one in this world can get more than 100 
in this paper. Still, you see you can ask the same question ok till now no one 
has got but what in near future? But this doesn’t strike your mind since you 
know more than 100 is not possible. Now let us take a set. 

𝑆𝑆 = {23𝑛𝑛 + 1|𝑛𝑛 ∈ ℕ} . However, you try you cannot find a prime number in S. 
This also does strike your mind, since you know each term is divisible by 3 
and greater than 3. But in case of trisection where is such impossibility 
coming? Because you are not rephrasing it mathematically. We try to make 
such attempt. 

 Let 𝑆𝑆 = {𝜃𝜃|𝜃𝜃 𝑐𝑐𝑐𝑐𝑛𝑛 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑐𝑐𝑡𝑡𝑏𝑏𝑡𝑡}.   So may be 600 is not a member. So, one 
question can be to show this fact. So firstly, you must translate what do I 
mean by trisecting by ruler and compass. This means we must define 
constructability first. So let us start with few points in the beginning. Then 
joining as many as we want and drawing circles with radii equal to their 
distance of separation the new points are created by their intersections. Now 
given say 10 points you can easily use trigonometry and plane geometry to 
find all possible intersection of these arcs and straight lines and you get co-
ordinate for the new points. Now replace 10 by n you get some more. So, you 
try to identify that which new element can be produced from the old points 
and what is the relation. Then you gradually understand some condition must 
be satisfied for an element to belong to S. And then 600 cannot be trisected is 
rephrased mathematically. But how to show whether 600 is a member or not. 
Then if you keep trying elementary methods won’t work. This will force you 
to solve equations and dealing roots. And then you see group theory enters. 
And you need to learn a lot of theory (group, rings fields, Galois) if you want 
to understand the proof. So, you were asking at kinder gardens why we are 
learning Alphabets.... 

Difference between Mathematics and reality: Suppose a magician comes and 
claims forget your proof I can trisect any angle. I don’t even need a compass. 
You can’t ignore.  Must accept his challenge. Now you give him 600. He takes 
the ruler and draws a line, and you check it is trisected. This is possible 
mathematically also. There is a point which if you join the angle becomes 200. 
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Its difficult but not impossible. Now every time you give an angle, he can 
choose a line that trisects the angle. So, what goes wrong? This is where 
Mathematics and reality gets separated. Mathematically, constructible means 
you must provide an algorithm to trisect. More precisely it means if you 
choose any point on the paper you must be able to explain which point is it. 
Magician must tell the one I have in my mind. But that is not acceptable. I 
explain why. I tell the Magician maybe you can construct the angles I give to 
you but how do you guarantee that you can do for all angles. Magician argues 
well then you give me one. I tell I can give you only finitely many that can 
never cover all cases. Then Magician tells then you can’t say I cannot, you can 
at most say not all cases are tested. But this is not what is called 
constructible. Constructible means the point must be formed through 
intersecting lines and arcs placing compass needle on already constructed 
points or joining those points. You cannot choose to draw a circle at any 
arbitrary point in the paper or join it to another point. But what if the point 
is arbitrary? Well, up to my knowledge this is not disproved in Mathematics. 
But it can be rephrased mathematically though.  

Another exciting thing may be is √2√2  a rational number? It seems it is 
irrational. But can one prove it? You might think first it’s easy. But then as 
you try to investigate you see you are stuck at the first step. But this obvious 
question which even can be understood at 9th or 10th standard and is very 
natural to ask turns to be a problem again in Galois Theory where we first go 
from transcendental and then to irrational. But imagine at the beginning will 
this problem be motivation to learn groups? A mere mention will only force 
the students to accept it instead of visualization. 

Now comes our age-old games and we see how these works mathematically. Its 
Bijoya Dosomi, the women are playing with sindoor. So, suppose near a pandel 
70 women are playing sindoor. It’s a custom that if someone puts vermillion 
you are also supposed to reciprocate it. Then there are at least two women 
who have played vermillion with the same number of women. Like may be the 
first women has played with three other women. The second women may be 
with 5 and so on. This can be formulated in this way, if we consider the 
women as dots and playing sindoor indicates joining a line between the dots. 
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Then the question rephrases to, there are two dots with same number of lines 
passing through them. This has a name in Maths. It is said as given a graph 
with 40 vertices there exist two vertices of the same degree.  

Next comes a game. A and B plays a game. A lay downs lottery tickets 
marked from 1 to 100. B cannot see the number. B pulls two tickets and A 
confirms whether they are consecutive or not. B must pick two consecutive 
tickets and is given 98 chances. Can be B ensure a win?  

You can try and I won’t be a spoiler. I just rephrase it in another way. This 
problem rephrases to give a graph of 100 vertices and 98 edges you can 
number the vertices with 1 to 100 so that no two consecutive vertices share an 
edge. [This is if B can’t ensure a win] 

Now let us move to some more popular problems.  

1. A student takes tuition from a teacher and has to pay him fees. Now the 
teacher is a wicked one and tells the student your fees will be decided on the 
number of classes you were mentally absent or was asked to unjoin. However, 
the fee is between Rs1 to Rs 1000. So, the student doesn’t know the actual 
fees. He asks his mother for 1000 bucks, but his mother is suspicious. So, she 
gives her son 10 sealed envelopes and writes the amount on the top of each 
envelop. The teacher will take as many sealed envelopes as he wants. So, what 
must be the amount the mother puts in each envelop so that the teacher gets 
his exact payment? 

2. A magician asks you to select an item from a list of 60 food items. After 
you select, he gives you six cards and asks you to return the cards where you 
find your selected item. You give him and he tells you the item you chose. 
Will the magic still work for 5 cards?  

3. A iron chuck weighing 100 Kilos dropped from crane near a construction 
area and was broken into five pieces. Can you tell what were the broken parts 
so that you ask for any weight between 1 to 100, these weights can be used for 
a weighing machine (common balance).  
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Solution:  

The first problem. Not only 1000 we can go till Rs 1023. His mother puts 1 
rupee in first box, 2 in second, 4 in third and so on. Why this works? We use 
induction. Our claim is that for n packets filled in this manner any amount 
from 1 to 2𝑛𝑛 − 1 can be paid. Clearly, true for 𝑛𝑛 = 1. Now let it be true for 

𝑛𝑛 = 𝑘𝑘. So for 𝑘𝑘 + 1 packets the range is upto 2𝑘𝑘+1 − 1. Let 𝑦𝑦 ∈ 2𝑘𝑘+1 − 1. If 𝑦𝑦 <
2𝑘𝑘 we are done with first k packets by induction. If 𝑦𝑦 ≥ 2𝑘𝑘, then take the 𝑘𝑘 +
1𝑡𝑡ℎ packet. Then we need to fill for 𝑥𝑥 = 𝑦𝑦 − 2𝑘𝑘. But 𝑦𝑦 < 2𝑘𝑘+1 ⇒ 𝑥𝑥 < 2𝑘𝑘. So x is 
achieved through induction. Hence, we add those packets which make up for 𝑥𝑥.  

Now this cannot be achieved with 9 packets. Why? May be the same 
denominations won’t work but why not in a different method. I pose the 
problem as there exists no method to make 9 packets to give all possible 
values from 1 to 1000. Again, we argue as follows: The only thing the teacher 
can do is choosing the envelops. Once the envelops are chosen the total 
amounts gets fixed since you can’t break the seal.   

How many possible choices. This is school level combinatorics. 29 = 512. Now 
it might happen that different combination of envelops can have same value in 
total but same set of envelops have a fixed amount. So, at max you can have 
512 different values. How can you have for 1000? 

The second one is a replica of the first. As for the third because it’s a balance 
you can put weight on both the sides. Now each weight has three options 
either its put on the same side of the balance or on the other side or not put 
on the balance. Rest you can do. And show the same cannot be achieved with 
four pieces.  

Now let’s see a game using linear algebra. A king has kept his treasures in a 
secret place and has encoded that with 7 numbers. Now he calls all his sons 
and gives a hint in such a way that any seven brothers can decipher the code 
but no six can. The king has 50 sons. How he codes and what is the hint he 
gives?  
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Solution:  

Where does Linear algebra comes in right? Well, apparently it has no 
connection. But think what hint the king can give. No six can decipher yet 
seven can, implies that from any seven you can find the seven numbers yet six 
can’t give the numbers. So, some sort of uniqueness in solution is apparent 
here. Now your mind recollects linear equations. In linear Algebra 
interpretation isn’t it like seven is the rank of some matrix! Well, think about 
it. A last hint Vandermonde’s Determinant.  

In a casino, at Table number 32, 4 players are asked to take their seats so as 
to form a circle. They eyes are blindfolded. Now in front of each one of them 
one card is kept.  The cards are colored green on one side and black on the 
other side. In each round the players will be asked if they want to skip the 
round or flip the card. Players answer “SKIP” or “FLIP”. And the cards are 
flipped accordingly. After each round if all the cards either show green or if all 
shows black the players win. If not, the table is rotated arbitrarily. And round 
2 begins. The host wins if 16 rounds are completed, and the players haven’t 
won so far. What strategy the players will use?  

There are many ways to view this problem. Firstly, you can consider SKIP as 
0 and FLIP as 1. So, each round is a four tuple with entries 0 or 1. So 
question is starting from any tuple can we reach (0,0,0,0) or (1,1,1,1) through 
flips. Problem is the players are blindfolded. They do not know from where 
they are starting. So even if they keep flipping how to guarantee to reach 
(0,0,0,0) or (1,1,1,1). This is achieved if they apply all possible combinations of 
SKIP and flip i.e., 16 times. So now the problem is can that be achieved in 16 
moves. Seems easy but wait! When the table is turned again you are back to 
the pavilion. Since the combination you have in mind may have already been 
achieved due to this rotation. For example, may be your choice is FSFF. But 
the table was rotated. If it was rotated to places, then the actual permutation 
might be FFFS which might have been considered before. So now you can 
understand this is like cyclic permutation where (1234) is same as (2341), 
(3412), (4123). So now might be you are sensing something as orbits. For 
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example, FFFS is same as FFSF, FSFF and SFFF since the table might turn 
up to any position so these turns are falling in the same class. We explain this 
more clearly in the following example. 

In a round table conference 20 glasses of juices of 4 distinct types (orange, 
lemon, mango, grape) are served to the delegates. How many ways can you 
arrange the drinks? 

This is a combinatorics problem. We must pour the juices in the glasses 
irrespective of any order. We will easily get the total number of possibilities. 
But we must understand, that being a round table rotation will experience the 
same pattern. So cyclic permutation. But problem is juices have same colors. 
If you try to do it through elementary tricks, you end up only with over or 
under counting. So how to tackle this? So, we can think each combination as a 
20-tuple with entries as 0,1,2,3 (four types) and we say two tuples same if 
after rotating few places they remain the same tuple. Like 
(00000111112222233333) is same as (22222333330000011111). Hence, we can 

think it as an action of ℤ20  on ℤ4
20  given by (𝑖𝑖, (𝑎𝑎1, 𝑎𝑎2, ⋯ , 𝑎𝑎20)) ↦

(𝑎𝑎1+𝑖𝑖, 𝑎𝑎𝑖𝑖+2 , 𝑎𝑎𝑖𝑖+3 , … … . ) with addition is taken in modulo 4. So, our answer is to 
find number of distinct orbits given by Burnsides Lemma.  

Some logical innuendo.  

A teacher announces I will take a surprise test this week. Show the teacher 
cannot take a surprise test. 

If the teacher doesn’t take the test on Friday, then the students know that 
Saturday is the exam day. So, it’s no longer surprise. So, the teacher cannot 
take the test on Saturday. If the teacher doesn’t take the test on Thursday the 
students know since the teacher cannot take it on Saturday, so the teacher has 
to take it on Friday. Then the student cannot take surprise test on Friday as 
students get to know. Proceeding inductively, we are done.  

So far so good. But what if the teacher takes a test on some day? Is there a 
Mathematical inconsistency? No. It is mathematically correct. Then why this 
discrepancy?  
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Let’s do another problem. In a conference 40 participants had given lecture 
demonstration. The judges discussed and told that at least one of the 
participants performances is unsatisfactory. From the next day whoever gets 
to know is disqualified leaves the conference. However, each participant knows 
who among the others are disqualified but doesn’t know his own fate. But it is 
found after some day few participants left. How did they come to know? 

Apparently, this is impossible. But see logically if you find no other 
participant is disqualified then it is you since at least one participant is 
removed. But if you find one person among the 39? Then you might be or 
might not be. But see the other can also see you. And if you are not ill-fated, 
the next day he won’t come. So, if the next day he doesn’t arrive then you are 
sure he was the only one. But if he shows up next day it means you are also 
disqualified. Hence, we proceed. But don’t things seem odd in your mind? 
What if the person is not intelligent?  Even if you assume him intelligent does 
that ensures he will think exactly in this fashion?  

So is the surprise test problem. You are assuming the teacher is thinking 
exactly like the students. This is where again mathematical rephrasing faces a 
serious problem. 

Lastly, we come up with some exciting problems like the 15 puzzle and the 
Rubik’s cube.   

15 puzzle: We are given a grid like this.  

   

 

 

  

By moving the pieces in the empty gap can arrange the blocks so as to get a 
grid like.   
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How to solve this? But before even solving the question which comes in mind 
is, is it at all possible? Can we rephrase it mathematically? If we carefully 
observe our question is whether from one permutation, we can move to 
another by a sequence of moves? But how can we translate moves? If we can 
the blank space as 16, then basically moving a piece in blank place is involving 
interchange of the two pieces. So basically, a transposition. So now the 
question leads to whether any permutation can be reached through 
transpositions. We also observe number of movements must be even as the 
blank place doesn’t remain at the last place at the end of the game. So, it 
must move as many steps up that many steps down and as many steps left so 
many steps right. So basically, every permutation must be an even 
permutation, mathematically must belong to 𝐴𝐴16.  Rubick’s cube clearly can 
be thought as a 3D manifesto is also understood through group actions and we 
name the group as Rubick’s cube group. This group has a huge order and very 
difficult to investigate though an explicit formula exists.  

We end by posing another puzzle.  Two friends A and B are asked to think of 
a positive integer each. Now they tell the number to C. C writes two numbers 
on the board. One is the sum other is arbitrary. He then starts with A and 
asks if A can tell which one is the sum. If A passes, then B gets the turn. The 
game continues until one of them tells the answer. How is it possible for either 
A or B. They can only utter YES or NO. 
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“Laws of probability, so true in general, so fallacious in particular” – 
Edward Gibbon 

 

Probability theory is nothing but study of uncertainty using mathematics and 
logics. When intuition meets theoretical calculations, magic of probability 
emerges. 

Let us consider a Die game- the die has a certain property. ‘Six’ is more likely 
to occur when we throw the die (may be a weighted die) i.e., the die is biased 
towards ‘Six’. Now, a participant has two options to play and win the prize. 
The options are –  

1. Roll the die six times independently, if at least one ‘Six’ occurs, win. 

Or, 

2. Roll the die twelve times independently, if at least two ‘Six’s occur, win. 

As, it is known that ‘Six’ is more likely to occur, any lazy person will choose 
option-1 to play the game. But, is it really worthy to choose option-1?  

It’s very similar to one of the famous historical problems, called ‘Newton-
Pepys Problem’ (1693). Samuel Pepys, former president of Royal Society of 
London, wrote a letter to Sir Isaac Newton regarding a gambling problem. The 
problem is given below –  
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“Which of the following three propositions has the greatest chance of success? 
 
A. Six fair dice are tossed independently and at least one “6” appears. 
 
B. Twelve fair dice are tossed independently and at least two “6”s appear. 
 
C. Eighteen fair dice are tossed independently and at least three “6”s appear.” 
 

Samuel Pepys thought that C is more probable. But Newton convinced him 
with his calculations and logics that A is more probable. On the first go, one 
may also think that all are equiprobable or C is more probable (Since, more 
trials, more chances to win). But actually, A is more probable.  

Mathematical Justification Using Random Variables :  

Newton uses first principle to calculate these probabilities as then concept of 
probability was only at its infancy. We will use random variables to discuss the 
problem. 

Let, X : Number of Sixes in N independent throws of a die (not necessarily fair). 
Clearly, X ~ Binomial(N, p). 

Where, p = Pr(‘Six’ appeared in a single throw of the die). For fair die, p = 1
6  

Let us define, g(n, p) = Pr(X ≥  𝑛𝑛 | 𝑁𝑁 =  6𝑛𝑛, 𝑝𝑝) = ∑ (6𝑛𝑛
𝑥𝑥 ) 𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)6𝑛𝑛−𝑥𝑥

6𝑛𝑛

𝑥𝑥=𝑛𝑛
  , 

n 𝜖𝜖 ℤ+ 

Note that, g(1, 16), g(2, 16), g(3, 16) are the probabilities of Pepys’ interest!  

If we draw the graph of g(n, p = 1
6) for different values of n, we will see that as 

n increases the sequence monotonically decreases but is bounded below by  1
2 . 
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We know that if X ~ Binomial(N, p) , Np is the mean of the distribution. Also, 
if (N+1)p is not an integer, then [(N+1)p] is mode of the distribution. In our 

problem, N = 6,12,18 and p = 1
6. So, 1,2,3 are the respective mean and mode of 

the distribution. Also, they are median. So, mean, median, mode coincide, 
though the distributions are positively skewed. It can be shown that for N = 6n 

& p = 1
6 . 

g(n, p) ≈ 1
2 + (0.4) Pr(X = n | N, p) 

For binomial distribution, as N alone increases the distribution spreads out. As 
a result, in our case the modal probability Pr(X = n | N, p) decreases => g(n, 
p) decreases. It is obvious from the graph below.  

 

But, it’s not always the case! If p  > 1
6 , the ordering may change.  
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It is evident from the graph that after certain value of p ( > 16), we can see 
different types of ordering. But again, after certain value of p (approx. 0.22), we 
will see a monotone ordering of g(1,p), g(2,p) & g(3,p), which is completely 

opposite of p = 16 . 

Now, we can visualize what happens to the Die game proposed at the 

beginning. For the die p > 16 . Following the same logic, it is now clear that the 
decision of the lazy person is not always worthy in terms of probability. 

It is to be noted that, the calculations of Newton were correct but the logic was 
wrong, which was explained by Prof. Stigler in his article ‘Isaac Newton as a 
Probabilist’. 

A further generalization of the problem is given by Chaundy and Bullard (1960). 

 

 

 

 

 

    Imagine you’re holding a postcard in your hand, on one 
side of which is written, “The statement on the other side of 
this card is true.” We’ll call that Statement A. Turn the card 
over, and the opposite side reads, “The statement on the other 
side of this card is false” (Statement B). Trying to assign any 
truth to either Statement A or B, however, leads to a paradox: 
if A is true then B must be as well, but for B to be true, A has 
to be false. Oppositely, if A is false then B must be false too, 
which must ultimately make A true....
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How to kill the King? 
 
 
 
 

Background: 
 

Takeda Kenshin is a renowned samurai of the Minamoto clan. He has earned 
his reputation by winning many battles single-handedly and assassinating evil 
warlords, kings, and samurais all over Japan. He is the “G.O.A.T” in his clan 
and his clan members are willing to lay out their lives for him without a 
moment’s notice. 
In the present day, he is travelling with 56 of his most trusted clan members 
on a mission to assassinate Toyotomi Nobunaga, one of the most hated Kings 
of Japan. 
However, one of his clan members has betrayed him and has already ratted 
out Takeda’s route and plan of action to the king in return for 6,000 gold 
coins. 
Consequently, on the 6th day of his journey towards the King’s palace, 
Takeda’s team is ambushed and is captured by the King’s guards. 
The King, known for his eccentric ideas, has planned something very evil for 
Takeda and his team. He calls this a game and has named it ‘The Killer’s 
Circle.’ 

 
The Killer ’s  Circle: 
Takeda and his team are brought to a huge hall with a huge round table with 
57 similar iron chairs which have been numbered from 1 to 57. The king 
announces the rules of the game: 

• Takeda and his team have to sit around the table with their swords in 
their left arm.  
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• The game would start from the 
samurai on chair 1.  

• At their turns, every samurai must 
kill the samurai immediately to his left. 

• This cycle would continue until 
only one samurai is left sitting at the 
table. 

• This samurai would have the choice of killing himself or challenging the 
king to a duel which, if he wins, will guarantee his freedom. 

 
Takeda’s  Challenge: 
The King has given Takeda’s team 2 minutes to decide the order in which 
they sit. Without a moment’s hesitation, his team has agreed that Takeda 
must win, finish the King and avenge his brothers. With time ticking away 
swiftly, where should Takeda sit to earn the duel with the King? 
 
An example of the rules: 
Let’s consider a case of 9 players. As can be seen from the diagram, 1 kills 2, 3 
kills 4, 5  kills 6, 7 kills 8, 9 kills 1, 3 kills 5, 7 kills 9, 3 kills 7 and 3 is the 
winner.  

 
The Solution: 
Any natural number (N) can be expressed as the sum of a power (𝑘𝑘) of 2 and 
some other number (𝑝𝑝). 

                          So,  𝑁𝑁 = 2𝑘𝑘 + 𝑝𝑝 
How many cycles would be needed to complete the game?  
Consider the case when   
𝑁𝑁 = 2𝑘𝑘, 𝑝𝑝 = 0. 
After every cycle, half the number 
of players die as every odd-
numbered player kills the even-
numbered player with respect to 1 
(considering 1 as the first chair). 
For example, 1 kills 2, 3 kills 4, and so on. 
After the 1st, 2nd, 3rd, 4th, …, ‘k’th cycle, we have  

Fig: An example with 8 players 
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𝑁𝑁
2 ,

𝑁𝑁
22 ,

𝑁𝑁
23 ,

𝑁𝑁
24 , . . . ,

𝑁𝑁
2𝑘𝑘 =

𝑁𝑁
2 ,

𝑁𝑁
4 ,

𝑁𝑁
8 ,

𝑁𝑁
16 , . . . ,

𝑁𝑁
𝑁𝑁,  players left. So, after k cycles, the 

game is up as we have only 1 player left.  
Now, let 𝑝𝑝 ≠ 0, i.e, 𝑁𝑁 = 2𝑘𝑘 + 𝑝𝑝.  
This is just an extension of the first case as after ‘p’ killings, the same 
situation is repeated. 
The ‘p’ killings are completed somewhere in the first cycle (as 2𝑘𝑘 > 𝑝𝑝). Now, 
we have 2𝑘𝑘 more players. Like the first case, we need ‘k’ cycles now to finish 
the game.  
However, we aren’t starting a new cycle after ‘p’ killings, we’re just continuing 
the 1st cycle. So, the total number of cycles is still k. 
Hence, in any case, we need ‘k’ cycles to complete the game.  
The pr imary case: Let the number of players be a power of 2. 
Thus, 𝑁𝑁 = 2𝑘𝑘 and 𝑝𝑝 = 0. 
After the first cycle, every even player gets killed, i.e., 1 kills 2, 3 kills 4, …, N-
1(odd) kills N(even). 

Now, we’re left with  𝑁𝑁1 =
𝑁𝑁
2 = 2𝑘𝑘−1 = 2𝑘𝑘1. 

The second cycle starts with 1 again. It is similar to the first cycle. The 
number of players is a power of 2 and player 1 starts the cycle. Hence, every 
player who is sitting in an even position now with respect to 1 gets killed. If 
player 1 is 1, 3 is 2, 5 is 3, 7 is 4 and so on and so forth. So, 1 kills 3 (new seat 

2), 5 kills 7 (new seat 4), …, (N-2) (new seat 𝑁𝑁2 − 1) kills (N-1) (new seat 𝑁𝑁2). 
  

Now, we’re left with 𝑁𝑁2 =
𝑁𝑁
4 = 2𝑘𝑘−2 = 2𝑘𝑘2  players with 1 starting the next 

cycle. 

So, during the (k-1) cycles we have 𝑁𝑁2 ,
𝑁𝑁
4 ,

𝑁𝑁
8 , . . . . , 2 players left (which are all 

powers of 2) with 1 starting the next cycle every time as every cycle is similar 
due to N being a power of 2. 
In the ‘k’ th cycle, we have 2 players with player 1 starting the game. Hence, 
player 1 wins the game.  
So, if 𝑁𝑁 = 2𝑘𝑘, 1 shall win the game every time.  

 
The general case of when 𝑁𝑁 = 2𝑘𝑘 + 𝑝𝑝, 𝑝𝑝 ≠ 0: 
This case is just an extension of the first case.  
Here, after ‘p’ samurais are killed, we will have the same situation as the first 
case with 𝑁𝑁 being a power of 2. 
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So, the first killer after ‘p’ killings will always win the game. 
Now, how can we determine what position comes after  ‘p’ killings?  
Note that 1 kill requires 2 people (a killer and a victim). So, ‘p’ killings mean 
‘2p’ people have already participated in the game (i.e., either have killed or 
have been killed). The seat immediately after 2p seats corresponds to that first 
killer for which the total number of players is a power of 2. Consequently, this 
is the (2𝑝𝑝 + 1)𝑡𝑡ℎ seat.  
As we have seen in the first case, this player always wins. 
Hence, in this game, the winning seat will be the  (2𝑝𝑝 + 1)𝑡𝑡ℎ seat. 

 
A limitation: 
The formula doesn’t hold if p is greater than 2𝑘𝑘, i.e., 2𝑘𝑘 must be the greatest 
power of 2 in N. This can be proved as follows: 

If 𝑝𝑝 > 2𝑘𝑘,
then, 2𝑝𝑝 > 2.2𝑘𝑘

∴ 2𝑝𝑝 + 2𝑝𝑝 > 2.2𝑘𝑘 + 2𝑝𝑝 = 2(2𝑘𝑘 + 𝑝𝑝) = 2𝑁𝑁
⟹ 4𝑝𝑝 > 2𝑁𝑁 ⟹ 2𝑝𝑝 > 𝑁𝑁

⟹ (2𝑝𝑝 + 1)(winning position) > 𝑁𝑁 + 1

 

 
Conclusion: 
Takeda quickly calculated  57 = 25 + 25. Then he deduced that the winning 
seat is the (2 × 25 + 1) = 51st seat. Taking his seat, Takeda wins the game 
with tearful eyes. 
Toyotomi had no other choice than to challenge the vengeful samurai. After a 
quick one-sided fight, Takeda beheads the king with his katana and ends his 
malice once and for all. 

 
 

 

∵ 2𝑘𝑘 + 𝑝𝑝 = 𝑁𝑁 
 
Which is not possible. So, 𝟎𝟎 ≤ 𝒑𝒑 < 𝟐𝟐𝒌𝒌. 

. .   
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Mathematical quilting is a form of recreational mathematics that involves 
sewing mathematical patterns on a quilt. It can be a purely artistic venture or 
an effort to investigate a mathematical structure or phenomena in a creative 
way. Several professional and amateur mathematicians partake in it, sharing 
their creations on their blogs and other platforms.  

One such quilt-like pattern arose out of the examination of relatively prime 
polynomials in 𝑥𝑥 with coefficients in ℤ2. Before we generate the quilt ourselves, 
let’s briefly look at ℤ2, define what it means for polynomials to be relatively 
prime, and understand how the Euclidean Algorithm can be used in our favor.  

I . Introduction 

The quotient ring ℤ2 consists of only two elements, denoted by {0,1}. It is 
defined with its usual addition as addition modulo 2 and multiplication as 
multiplication modulo 2. As a result of this, it has an interesting quality, i.e., 
addition is no different from subtraction.  

Here, 1+1=0. 

Thus, for any 𝑛𝑛 ∈ ℤ, 𝑛𝑛 + 𝑛𝑛 = 𝑛𝑛(1 + 1) = 𝑛𝑛. 0 = 0. 

From here, we should note that,  

(𝑛𝑛 + 𝑚𝑚)2 = 𝑛𝑛2 + 2𝑛𝑛𝑚𝑚 + 𝑚𝑚2 

= 𝑛𝑛2 + (𝑛𝑛𝑚𝑚 + 𝑛𝑛𝑚𝑚) + 𝑚𝑚2 

= 𝑛𝑛2 + 𝑚𝑚2. 
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As a commutative ring with a multiplicative unity, where the non-zero element 
has a multiplicative inverse, we know that ℤ2 is a field.  

Now, let’s consider polynomials in one indeterminate with their coefficients in 
ℤ2. In simple terms, their coefficients will be either 0 or 1. We know that this 
set of polynomials equipped with the usual addition and multiplication on 
polynomials, forms a ring, which is denoted by ℤ2[𝑥𝑥]. Since ℤ2 is a commutative 
ring with unity, ℤ2[𝑥𝑥] is also a commutative ring with unity.  

Note that the polynomials can be defined as infinite formal sums,   

∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯ + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + ⋯ ,
∞

𝑖𝑖=0
 

where 𝑎𝑎𝑖𝑖 ∈ ℤ2  and 𝑎𝑎𝑖𝑖 = 0 for all except a finite number of values of 𝑖𝑖. 

For example,   𝑥𝑥2 +  𝑥𝑥 + 1 can be written as ∑ 1. 𝑥𝑥𝑖𝑖∞
𝑖𝑖=0  where 𝑎𝑎𝑖𝑖 = 0 for all 𝑖𝑖 > 2.   

Following this, for simplicity, we will express a polynomial of degree 𝑛𝑛 as  
∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯ + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛,𝑛𝑛

𝑖𝑖=0  when 𝑎𝑎𝑖𝑖 = 0 for all 𝑖𝑖 > 𝑛𝑛.  

 

As  ℤ2 is a field, we know that for any 𝑎𝑎, 𝑏𝑏 ∈ ℤ2 if 𝑎𝑎𝑏𝑏 = 0 then either 𝑎𝑎 = 0 or 
𝑏𝑏 = 0. From this, we can conclude that  ℤ2[𝑥𝑥] is an integral domain.  

In order to briefly describe the proof, we consider any field 𝐹𝐹 and from it, 
any two polynomials 𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥) of degrees 𝑛𝑛 and 𝑚𝑚 such that, 𝑓𝑓(𝑥𝑥)  =
 ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=0 , 𝑔𝑔(𝑥𝑥) = ∑ 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=0 , and 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑚𝑚 ≠ 0.    

Let us take the product of the two polynomials, 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥).  The coefficient 
of the 𝑘𝑘th term of the resulting polynomial can be written as 
∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑘𝑘−𝑖𝑖 = 0𝑘𝑘

𝑖𝑖=0  where 0 ≤  𝑘𝑘 ≤  𝑛𝑛 + 𝑚𝑚.  

We see that the coefficient of the first term is 𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚. As 𝐹𝐹 is a field, 
𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚 ≠ 0.  This tells us that the product of two non-zero polynomials of 
𝐹𝐹[𝑥𝑥] cannot be equal to 0. Otherwise, it would lead us to a contradiction.  

Hence, 𝐹𝐹[𝑥𝑥] is an integral domain.  

Furthermore, we can define a norm function, N: ℤ2 → ℕ ∪ {0} such that 

 N(𝑓𝑓(𝑥𝑥)) = degree of 𝑓𝑓(𝑥𝑥),  where 𝑓𝑓(𝑥𝑥)  is an element of ℤ2. 

It is easy to establish that for any two non-zero polynomials 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) ∈
ℤ2,  
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deg(𝑓𝑓(𝑥𝑥)) ≤ deg(𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)). 

Thus, ℤ2 is a Euclidean domain and we can define a Euclidean algorithm for 
this ring by first establishing the division algorithm.  

  

I I . The Division algor ithm and the Euclidean algor ithm  
 

For any field 𝐹𝐹, the division algorithm for the polynomials belonging to 𝐹𝐹[𝑥𝑥] 
can be defined as follows: 

Let 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) be two elements of 𝐹𝐹[𝑥𝑥] of degrees 𝑛𝑛 and 𝑚𝑚,  

𝑓𝑓(𝑥𝑥)  =  ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=0 ,  𝑔𝑔(𝑥𝑥) = ∑ 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=0 , and 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑚𝑚 ≠ 0.    

Then there exists a unique pair of polynomials 𝑞𝑞(𝑥𝑥) and 𝑟𝑟(𝑥𝑥) in 𝐹𝐹[𝑥𝑥] such that, 

𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥). 𝑞𝑞(𝑥𝑥) + 𝑟𝑟(𝑥𝑥) 
where either 𝑟𝑟(𝑥𝑥) = 0 or 𝑑𝑑𝑑𝑑𝑔𝑔(𝑟𝑟(𝑥𝑥)) < 𝑑𝑑𝑑𝑑𝑔𝑔(𝑔𝑔(𝑥𝑥)) = 𝑚𝑚. 

 

Our objective was to be able to work with relatively prime polynomials. In order 
to do that, it is important to learn how to find the greatest common divisor. We 
can define a Euclidean algorithm on ℤ2 using our knowledge of the division 
algorithm. (Note: every non-constant polynomial in ℤ2[𝑥𝑥] has ‘1’ as its leading 
coefficient) 

Let 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) be any two elements of  ℤ2[𝑥𝑥], not both zero. Then there 
exists polynomials 𝑠𝑠(𝑥𝑥) and 𝑡𝑡(𝑥𝑥) ∈ ℤ2[𝑥𝑥] such that,  

𝑠𝑠(𝑥𝑥)𝑓𝑓(𝑥𝑥) + 𝑡𝑡(𝑥𝑥)𝑔𝑔(𝑥𝑥) = gcd(𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)).  
Here, ‘gcd’ stands for greatest common divisor. We define the greatest common 
divisor 𝑑𝑑(𝑥𝑥) to be a polynomial of the highest degree for which 𝑑𝑑(𝑥𝑥) divides 
𝑓𝑓(𝑥𝑥) and 𝑑𝑑(𝑥𝑥) divides 𝑔𝑔(𝑥𝑥).  

 

The division algorithm tells us that, suppose 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) be polynomials of 
degrees 𝑛𝑛 and 𝑚𝑚, 𝑛𝑛 ≥ 𝑚𝑚,  then there exists a unique pair of polynomials 𝑞𝑞(𝑥𝑥) and 
𝑟𝑟(𝑥𝑥) such that,  

𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥). 𝑞𝑞(𝑥𝑥) + 𝑟𝑟(𝑥𝑥)  where either 𝑟𝑟(𝑥𝑥) = 0 or 𝑑𝑑𝑑𝑑𝑔𝑔(𝑟𝑟(𝑥𝑥)) < 𝑑𝑑𝑑𝑑𝑔𝑔(𝑔𝑔(𝑥𝑥)) = 𝑚𝑚. 

Thus, the greatest common divisor 𝑑𝑑(𝑥𝑥) of 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), divides  
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𝑟𝑟(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥). 𝑞𝑞(𝑥𝑥). 
From this we get a neat helpful relation,  

gcd(𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)) = gcd(𝑔𝑔(𝑥𝑥), 𝑟𝑟(𝑥𝑥)). 

We can use this simpler relation repetitively to find the greatest common divisor 
of any two polynomials of our chosen field. If 𝑚𝑚, the degree of polynomial 𝑔𝑔(𝑥𝑥), 
is at least 1 i.e., 𝑚𝑚 ≥ 1, then as the 𝑑𝑑𝑑𝑑𝑔𝑔(𝑟𝑟(𝑥𝑥)) < 𝑑𝑑𝑑𝑑𝑔𝑔(𝑔𝑔(𝑥𝑥)) = 𝑚𝑚, we know that 
after a finite number of repetitions, the algorithm will lead us to an ordered 
pair, (𝑐𝑐(𝑥𝑥), 𝑘𝑘) where 𝑑𝑑𝑑𝑑𝑔𝑔(𝑐𝑐(𝑥𝑥)) ≤ 1 and 𝑘𝑘 is a constant polynomial, i.e., 𝑘𝑘 ∈ ℤ2.  

Now, if 𝑘𝑘 = 0, then gcd(𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)) = 𝑐𝑐(𝑥𝑥). Otherwise, 𝑘𝑘 = 1 and the 
polynomials 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are said to be relatively prime.  

 

I I I .  Polynomials in ℤ𝟐𝟐 
 

We will now try to identify relatively prime polynomials in ℤ2 in order to plot 
them and generate our quilt! For simplicity and ease, we only consider 
polynomials up to the third degree.  

Since ℤ2 only has two elements, we can list out all the polynomials we will be 
working with:  

0, 1, 
 𝑥𝑥, 𝑥𝑥 + 1, 
𝑥𝑥2, 𝑥𝑥2 + 1, 𝑥𝑥2 + 𝑥𝑥, 𝑥𝑥2 + 𝑥𝑥 + 1, 
𝑥𝑥3,    𝑥𝑥3 + 1,   𝑥𝑥3 + 𝑥𝑥,   𝑥𝑥3 + 𝑥𝑥 + 1,  
𝑥𝑥3 + 𝑥𝑥2 + 1, 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥, 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1. 
 

Suppose we were to find the greatest common divisor of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1 
and 𝑔𝑔(𝑥𝑥) = 𝑥𝑥3 + 1. Then, applying the Euclidean Algorithm we get this 
sequence of equations: 

𝑓𝑓(𝑥𝑥) = 1. (𝑥𝑥3 + 1) + (𝑥𝑥2 + 𝑥𝑥) = 𝑞𝑞1(𝑥𝑥). 𝑔𝑔(𝑥𝑥) + 𝑟𝑟1(𝑥𝑥)    
𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 1)(𝑥𝑥2 + 𝑥𝑥) + (𝑥𝑥 + 1) = 𝑞𝑞2(𝑥𝑥)𝑟𝑟1(𝑥𝑥) + 𝑟𝑟2(𝑥𝑥) 
𝑟𝑟1(𝑥𝑥) = (𝑥𝑥)(𝑥𝑥 + 1) + 0 = 𝑞𝑞3(𝑥𝑥)𝑟𝑟2(𝑥𝑥) + 0. 
Thus, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1 and 𝑔𝑔(𝑥𝑥) = 𝑥𝑥3 + 1 are not relatively prime and 
their greatest common divisor is (𝑥𝑥 + 1). 
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Note that we can find the required quotient and remainder polynomials by the 
usual long division keeping in mind that we are in ℤ2. For example: 

𝑥𝑥3 + 1  ⟌𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1 

𝑥𝑥3 + 1 

0 + 𝑥𝑥2 − 1 + 𝑥𝑥 + 1 

Thus, the remainder is 𝑥𝑥2 − 1 + 𝑥𝑥 + 1 = 𝑥𝑥2 + 𝑥𝑥 + (1 + 1) = 𝑥𝑥2 + 𝑥𝑥. 
 

We can also denote this chain of equations in a simpler format: 

(𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1, 𝑥𝑥3 + 1)    
𝑞𝑞1(𝑥𝑥)=1→       (𝑥𝑥3 + 1, 𝑥𝑥2 + 𝑥𝑥)

𝑞𝑞2(𝑥𝑥)=(𝑥𝑥+1)→         (𝑥𝑥2 + 𝑥𝑥, 𝑥𝑥 + 1)
𝑞𝑞3(𝑥𝑥)=𝑥𝑥→      (𝑥𝑥 + 1,0). 

Hence, we take pairs of polynomials of ℤ2 and check if they are relatively prime. 
We use this information to form our quilt! Using the heatmap.2 function from 
the R package ‘gplots,’we can denote every ordered pair of relatively prime 
polynomials as a purple square and every order pair of non-relatively prime 
polynomials as a white square.  

 

This quilt does offer some insight into the relatively prime polynomials of 
ℤ2[𝑥𝑥].  
If we look at the rectangle representing the ordered pairs of all first-degree 
polynomials, we will notice that they contain an equal number of purple and 
white squares. This holds for the rectangles containing the second- and third-
degree polynomials as well.  

0 1 x
x+

1
x^

2
x^

2+
1

x^
2+

x
x^

2+
x+

1
x^

3
x^

3+
1

x^
3+

x
x^

3+
x+

1
x^

3+
x^

2
x^

3+
x^

2+
1

x^
3+

x^
2+

x
x^

3+
x^

2+
x+

1

x 3̂+x 2̂+x+1
x 3̂+x 2̂+x
x 3̂+x 2̂+1
x 3̂+x 2̂
x 3̂+x+1
x 3̂+x
x 3̂+1
x 3̂
x 2̂+x+1
x 2̂+x
x 2̂+1
x 2̂
x+1
x
1
0



5656

Mathematicians studying this found that: if two polynomials (where both do 
not have degrees equal to 0), are randomly chosen from ℤ2[𝑥𝑥], then the 

probability of them being relatively prime is 12. 

 
IV. Probability of relatively pr ime polynomials in ℤ𝟐𝟐[𝒙𝒙]. 

 
To understand how that can be true, we can utilise the Euclidean algorithm to 
match any non-relatively prime pair of polynomials (𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)) with a relatively 
prime pair of polynomials (𝑓𝑓1(𝑥𝑥 ), 𝑔𝑔1(𝑥𝑥)) of the same degree. 

 

The previously mentioned theorem can be formally written as: Let 𝑓𝑓(𝑥𝑥) and 
𝑔𝑔(𝑥𝑥) be two polynomials from the set of polynomials in ℤ2[𝑥𝑥] of degrees 𝑚𝑚 and 
𝑛𝑛, where both 𝑚𝑚 and 𝑛𝑛 are not zero. If they are chosen randomly (i.e. uniformly 
and independently), then the probability that 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are relatively prime 

is 12. 

Suppose 𝑛𝑛 = 0, then 𝑔𝑔(𝑥𝑥) = 0 or 1.  Thus, any non-relatively prime pair (𝑓𝑓(𝑥𝑥), 0) 
can be matched with a relatively prime pair (𝑓𝑓(𝑥𝑥),1).  

We hope to do something similar in the general case.  

Suppose 1 ≤ 𝑛𝑛 ≤ 𝑚𝑚, then if we applied the Euclidean algorithm on a non-
relatively prime pair (𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)), we would finally arrive at (𝑐𝑐(𝑥𝑥),0) where 𝑐𝑐(𝑥𝑥) 
(at least a first-degree polynomial) is the greatest common divisor of 𝑓𝑓(𝑥𝑥) and 
𝑔𝑔(𝑥𝑥). It gives us a unique sequence as, by the division algorithm, we know that 
their exists only one pair of quotient and remainder polynomials that satisfy the 
conditions.  

Suppose the sequence is:  

(𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥))    
𝑞𝑞1(𝑥𝑥)→     (𝑔𝑔(𝑥𝑥), 𝑟𝑟1(𝑥𝑥))

𝑞𝑞2(𝑥𝑥)→    (𝑟𝑟1(𝑥𝑥), 𝑟𝑟2(𝑥𝑥))
𝑞𝑞3(𝑥𝑥)→    (𝑐𝑐(𝑥𝑥),0) 

Then, due to its uniqueness we can reverse this process- starting from (𝑐𝑐(𝑥𝑥),0) 
reversing the order of the quotient polynomials and ending at (𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)).  
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Using our previous example of the ordered pair (𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1, 𝑥𝑥3 + 1), we 
start from its greatest common divisor:  

(𝑥𝑥 + 1,0)    
𝑞𝑞1(𝑥𝑥)=𝑥𝑥→       (𝑥𝑥2 + 𝑥𝑥, 𝑥𝑥 + 1)

𝑞𝑞2(𝑥𝑥)=𝑥𝑥+1→        (𝑥𝑥3 + 1, 𝑥𝑥2 + 𝑥𝑥)
𝑞𝑞3(𝑥𝑥)=1→      (𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1, 𝑥𝑥3 + 1) 

In a similar way, we can start with the pair (𝑐𝑐(𝑥𝑥), 1) and through the reversed 
order of quotient polynomials arrive at a pair of relatively prime polynomials 
(𝑓𝑓1(𝑥𝑥 ), 𝑔𝑔1(𝑥𝑥)) of the same degree.  

In this manner, every non-relatively prime pair (𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥)) can be matched 
with a pair of relatively prime polynomials (𝑓𝑓1(𝑥𝑥 ), 𝑔𝑔1(𝑥𝑥)) of the same degree.  

 

Mathematical quilting, whether physical or digital, is a way of exploring 
mathematical ideas through art and creativity. As we have seen, it can combine 
several concepts together and even illustrate mathematical proofs in a unique 
way.   

 

V. The R program:  

#Here, 0 represents an ordered pair of polynomials that are not relatively prime 
while 1 represents a pair that is relatively prime. 

A=matrix(c(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),ncol=1) 

B=matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),ncol=1) 

C=matrix(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1),ncol=1) 

D=matrix(c(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0),ncol=1) 

E=matrix(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1),ncol=1) 

F=matrix(c(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0),ncol=1) 

G=matrix(c(0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0),ncol=1) 

H=matrix(c(0,1,1,1,1,1,1,0,1,0,1,1,1,1,0,1),ncol=1) 

I=matrix(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1),ncol=1) 

J=matrix(c(0,1,1,0,1,0,0,0,1,0,0,1,0,1,0,0),ncol=1) 

K=matrix(c(0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0),ncol=1) 
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L=matrix(c(0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1),ncol=1) 

M=matrix(c(0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0),ncol=1) 

N=matrix(c(0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1),ncol=1) 

O=matrix(c(0,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1),ncol=1) 

P=matrix(c(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0),ncol=1) 

poly=cbind(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P) 

#we rename the rows and columns accordingly  

x=c("0", "1", "x", 
"x+1","x^2","x^2+1","x^2+x","x^2+x+1","x^3","x^3+1","x^3+x","x^3+x
+1","x^3+x^2","x^3+x^2+1","x^3+x^2+x","x^3+x^2+x+1") 

y=c("0", "1", "x", 
"x+1","x^2","x^2+1","x^2+x","x^2+x+1","x^3","x^3+1","x^3+x","x^3+x
+1","x^3+x^2","x^3+x^2+1","x^3+x^2+x","x^3+x^2+x+1") 

rownames(poly)=x 

colnames(poly)=y 

#forming the "quilt" 

poly 

library(gplots) 

library(RColorBrewer) 

heatmap.2(poly, 

Rowv =NULL, 

Colv=NULL,col=colorRampPalette(brewer.pal(3,"Purples"))(10), 
rowsep=c(1:16), colsep=c(1:16),sepcolor="black",sepwidth=c(0.01,0.01), 

key = FALSE, 

density.info=c("none") 

trace=c("none")) 
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A glimpse into Mersenne Primes  

 

 

 

 

 

 

 

Consider a number of the form Mn = (2n -1) where n ≥ 1.  Numbers of this form 
are generally called Mersenne numbers, named after  the 17th-
century French scholar Marin Mersenne. 

If the number Mn is prime, then the number is said to be a Mersenne prime.  

Now, we shall see a result. 

Result: let a > 0, j ≥ 2.If aj-1 is prime, then a=2 and j is also a prime. 

Proof: we can write, aj-1 = (a-1) (aj-1 +aj-2+…+a+1) 

 Where, aj-1 +aj-2+…+a+1 ≥ a+1>1 

Since aj-1 is prime, the other factor must be 1. [if p is a prime, p=ab, b>1 then, 
b=p and a must be 1] 

So, a-1=1 or, a=2 

Now, let j is not prime. Then, j can be written as – 

j = kn where k>1, n>1 

so, aj-1 = (ak)n-1 

or,  aj-1 = (ak-1)( ak(n-1)+ ak(n-2)+…+ak+1) 

each factor on R.H.S is greater than 1. This implies aj-1 is not prime. This is a 
contradiction to the fact that aj-1 is prime. 
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So, j must be prime. This completes the proof. 

By the help this result, we can say that, if Mn is prime, then n is prime.  

So, we can define Mersenne prime as a prime number of the form Mp = (2p -1) 
where p≥1 and p is a prime number. 

For an example, for p=2, M2 = 22-1 = 4-1 = 3 which is a prime number. So, 3 is 
a Mersenne prime. 

Now we know that Mp is prime means P is prime. But conversely can we say that 
if P is a prime, then Mp is prime? 

The simple answer is NO!  

Why? Consider M11, 11 is a prime but M11= 211-1= 2047 = 23 x 89 is not a 
prime. 

So M11 is composite. So, Mp is prime implies P is prime, but for any prime P, Mp 
is not prime.  

Actually Mp  is prime for p=2,3,5,7,13,17,19…and  there are many more primes. 

Now, we want to show a relationship between Mersenne pr imes and 
perfect numbers. 

Perfect numbers: A positive integer n is said to be perfect if n is equal to the sum 
of all its positive divisors, excluding n itself. 

For an example, 6 has positive divisors 1,2,3 and 6. 

Excluding 6 we get,6=1+2+3. So 6 is a perfect number. 

We take a perfect number n where σ denotes the sum of all the positive divisors 
of n. Then, by definition, σ(n) – n =n, or σ(n)=2n. 

For 6, σ(6) =1+2+3+6=12, σ(6)-6=6, or, σ(6)=2x6 

Now, we shall prove a result which relates the Mersenne primes with the perfect 
numbers. 
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Result: If 2c-1 is prime (c>1), then a= 2(c-1) (2c-1) is perfect and every even 
perfect number is of this form. 

Proof:   

[In this proof, we shall use the following results when needed 

1. if n=p1k1p2k2…prkr is the prime factorization of n>1 then σ(n)= (p1k1+1-
1/p1-1)…( prkr+1-1/pr-1)  

and  

2. σ(mn)= σ(m) σ(n) if gcd(m,n)=1 ] 

Let, a be an even perfect number.  

a = 2(c-1) n where n is an odd integer and c≥2 

So, gcd(2(c-1), n)=1 

Then σ(a)= σ(2(c-1)n)= σ(2(c-1)) σ(n)= (2c-1) σ(n) [It can be easily checked that 
σ(2(c-1))=2c-1]. Since a is perfect, σ(a)=2a=2cn 

So, 2cn=(2c-1) σ(n) 

This implies 2c-1 | 2cn 

But 2c-1 and 2c are relatively prime to each other. 

So, 2c-1|n 

Say, n=(2c-1) w  

Putting n is previous equation,  

2c(2c-1) w=(2c-1) σ(n) 

Or 2cw= σ(n) 

Now w and n, both are divisors of n, so, 

 2cw= σ(n)≥ w+n=w+(2c-1) w=2cw 

So, σ(n)= w+n 
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So, n has ony 2 positive divisors, w and n. so, n has to be a prime number and 
w=1. 

So,n=(2c-1) is a prime number, which completes one part of the proof. 

For the other part, let (2c-1) =p, a prime number. 

We consider the integer a=(2c-1) p 

gcd(2c-1, p)=1 

σ(a)= σ(2c-1p) = σ(2c-1) σ(p)=(2c-1)(p+1)=(2c-1)2c=2.(2(c-1)(2c-1))=2a 

so, a is a perfect number. 

This proves our desired result.  

This is known as Euclid-Euler theorem, which asserts a one-to-one 
correspondence between Mersenne pr imes and even perfect numbers.  

Now we shall see some results about Mersenne primes. 

According to Mersenne, Mp is prime for p=2,3,5,7,13,17,19,31,67,127,257 and 
composite for all other primes p<257.But, later it was proved that M67 is not 
prime. 

Also first four Mersenne primes, when each one is substituted for p in the formula 
2p – 1, a higher Mersenne prime is obtained. But that also failed for p=13. 

There are various methods to check whether certain special types of Mersenne 
numbers are prime or composite. One such is the next one. 

Result: If p and q=2p+1 are primes, then either q|mp or q|Mp+2, but not both. 

Proof: By Fermat’s theorem, 2q-1=1(mod q) 

Or 2q-1-1 = 0(mod q) 

Or q|2q-1-1 

Now, p=(q-1)/2 

Mp=2(q-1)/2-1 

2q-1-1=(2(q-1)/2-1) (2(q-1)/2+1) 
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 =(2(q-1)/2-1) (2(q-1)/2-1+2) 

 =(Mp)(Mp+2) 

So, q|(Mp)(Mp+2) 

Or q|(Mp) or q|(Mp+2) [as q is prime] 

[we used the result p|ab implies p|a or p|b where p is a prime] 

But q cannot divide both because if that happens then q will divide (Mp+2)- 
(Mp)=2, which is impossible as q=2p+1 or q does not divide 2. 

Hence our claim is established. 

Now we shall illustrate the result through a simple example. 

Take p=11, q=2p+1=23 is a prime.  

Then by our previous result, 23|M11 or 23|M11+2. 

M11=211-1 

It is very easy to check that, 211=1(mod 23) or, 23|211-1 or 23|M11 

So, M11 is not prime. 

Same way, we can show, M23 is not prime as 47|M23 

Now we take M29. In that case, it can be checked very easily that 59| M29+2.  

 So, now the question rises that can we get some conditions q such that q|Mp? 

There lies our next result. 

Result: if q= 2n+1 is a prime then 

a) q|Mn,, if q≡1(mod 8) or q≡7(mod 8) 
b) q|Mn +2, if q≡3(mod 8) or q≡5(mod 8) 

As a corollary of this result, we get,  

If p and q = 2p +1 are both odd primes with p≡3(mod 4), then q|Mp. 

Taking p=11, we get 23|M11 

Taking p=23,83, any prime satisfying this criterion… we get Mp to be composite. 
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Now, we shall see a couple of more results. 

 

 

Result: If p is an odd prime, then any prime divisor of Mp is of the form 2kp+1 

 

Moreover , we have another result following this : 

If p is an odd prime, then any prime divisor q of Mp is of the form q≡±1(mod 8) 

We now show an illustration of the above results . 

We take M17, 17 is a prime. So, all prime divisors will be of the form 34k+1. 

M17=217-1, √M17=362.037 

So, the integers of the form 34k+1 that are less than 362 are 

35,69,103,137,171,205,239,273,307,341. 

Among them, 103,137,239,307 are primes. It can be shown that none of them is 
identical to ±1(mod 8). 

So, M17 has no prime divisors. So, it is a Mersenne prime.  

51 Mersenne primes are known As of October 2020. The largest known prime 
number, 282,589,933 − 1, is a Mersenne prime. There are a lot of facts and 
interesting results lies in this beautiful topic. We end our discussion about the 
Mersenne primes here. 
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Age determination of planetary surfaces is a complex task to perform. There 
being no rock samples available for direct age dating, the age determination 
process of terrestrial planets other than our Earth gets complicated. To solve the 
problem, a process known as Crater Chronology has been developed.  

From the very beginning of the formation of our solar system, meteorite impacts 
were frequent cataclysmic events that used to take place. The bodies, impacting 
on the planetary surfaces resulting in the 
formation of impressions or as common 
landforms called Impact Craters, are known 
as Impactors. Craters form when high 
velocity impactors crash on the planetary 
surfaces. 

The frequency of impact of meteorites or 
asteroids on planetary surfaces was higher in 
the past. The crater density, i.e. the number 
of craters present in a unit area, is higher 
with increasing age of the surface. With time the number as well as size of 
impactors decreased. This infers that larger sized and higher crater density of a 
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certain area is much older than that of the lower or smaller one. So, the number 
of craters a certain area or a certain geological feature will act as a proxy of its 
age. 

ASSUMPTIONS: 

I. Particle flux is constant over the entire planet surface 
II. Frequency of the craters produced by the impactors can be measured with 

respect to the size of the craters. 
III. Area of interest to be dated is homogenous in nature 

IMPORTANT TERMS: 

Size-Frequency Distr ibution (SFD):  SFD quantifies the number of craters 
as a function of crater size. 

Production Function (PF): PF is the formation of number of craters of a 
particular size in relation to the number of craters of any other size. 

Chronology Function (CF): It is a tool to determine the age of a certain 
area/surface. It is a function of SFD and PF.  

SFD works only with primary craters. The factors affecting the SFD are 
Magmatic Flooding, Ejecta Blanketing, Secondary Cratering, Superposition, 
Abrasion and Infilling, Mass Wasting and Presence of Volcanic Crater. 

METHOD: 

The technique of Crater Chronology 
requires a sequence of steps to 
determine the relative age of any 
planetary surfaces. With the help of 
remote sensing high resolution image 
data and GIS applications, the entire 
process is executed. 

The concept for Crater Chronology 
involves fitting the observed Crater 
Size-Frequency Distribution (CSFD) of 
a surface unit to a known PF, and to 
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use the crater frequency for certain crater sizes together with a calibrating CF to 
obtain an absolute age. Now the age of a surface unit is to be measured. For this, 
it should be able to have a cumulative frequency corresponding to a standard 
crater diameter. That particular cumulative frequency value (Say, the standard 
crater diameter is taken to be 1 km) will be used to obtain the model age of the 
chronology function. Hence, to get that frequency the cumulative crater size-
frequency distribution normalised to a unit area is plotted and then until it fits 
the data points the production function is shifted. Therefore, the process of age 
determination requires the determination of crater size frequency distribution, 
fitting production function and in the end estimating age from chronology 
function.  

To execute the entire process the following steps are followed: 

STEP 1: Mapping the required area and locating craters 

STEP 2: BUFFER CRATER COUNT  

STEP 3: Randomness Analysis and Age Determination 

CONCLUSION : 

The craters that are to be included in the crater counting process must be 
primary craters, and neither any secondary nor any ghost/relic crater from an 
underlying older unit nor any volcanic crater can be included in the estimation. 
These important factors are to be kept in mind during crater counting. This 
CSFD technique is the only tool available to us as long return rock samples from 
the planets are not available to the scientists. 
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   SATISFYING FACTORIALS 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Mathematics, the term ‘inequality’ holds an important place. An inequality is a 
relation which makes a non-equal comparison between two numbers or other 
mathematical expressions. There are several kinds of inequalities. Here we are going to 
prove such an inequality. 
We know of a famous inequality, 
                      (n+1)!  > 2n     ∀∀ n ε  N  …  (1) 
We are going to use the idea of the inequality mentioned above to get an interesting 
outcome which is a more complicated inequality. 
At first glance, the inequality that we are going to prove looks very cumbersome to 
the common reader, but on closer inspection, the inequality turns out to be actually 
true. 
It is as follows: 
   (k-1)! kn < (n+k-1)!   ∀∀ n, k ε N ; n > k ......(2) 
Now we are going to prove (2). 
Steps: 
⦁ We prove (n+1)!  > 2n     ∀∀ n ε N  ......(1) 
⦁ We use the idea of (1) to prove (2) 
 We have, 
                                          1     =        1  
                                  1 . 2     =        1 . 2 
                             1 . 2 . 2     <        1 . 2 . 3 
                         1 . 2 . 2 . 2     <        1 . 2 . 3 . 4 
                                .                           . 
                                .                           .  
                                .                           .  
                                .                           .  
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                  1 . 2 . 2............2     <       1 . 2 . 3...............n 
Extending the above inequalities, we get  
                                   (n)!   > 2n-1     ∀∀ n ε N   
Here, n ε N  is arbitrary. 
So, we substitute n by (n+1) to get, 
                              (n+1)!  >  2n     ∀∀ n ε N   
Similarly, we go on replacing 2 by k ε N  to get, 
                                      1      =        1  
                              1 . 2      =        1 . 2  
                          1 . 2 . 3      =        1 . 2 . 3  
                      1 . 2 . 3 . 4      =        1 . 2 . 3 . 4                  
                          .                           .  
                          .                           .   
                1 . 2 . 3 . 4.......k     =        1 . 2 . 3 . 4.......k  
           1 . 2 . 3 . 4..........k . k    <        1 . 2 . 3 . 4.......k . (k+1)               
                          .                           .  
                          .                           .   
         1 . 2... .(k-1) . k . k...k       <        1 . 2 . 3...(k-1) . k . (k+1).. .n  
          
     Here, in the LHS, k is multiplied (n-k+1) times,  
∴ Simplifying the above inequality, we come up with its shorthand: 
         (k-1)! kn-(k-1) < n!   ∀∀  n, k ε N ,  
Clearly, for n > k the above inequality holds true. 
Intuitively from the previous inequality, n ε N  is arbitrary. 
So, we replace n ε N  by n+(k-1) ε N  to get: 
      (k-1)!  kn < (n+k-1)!    ∀∀  n, k ε N ; n > k  
                                               Hence, (2) is proved. 
     Some useful results: 
⦁ Rearranging the above inequality we get, 
                kn / n!   <    n+k-1Ck-1 

 
 

           
“Mathematics is not a careful march down a well-cleared 
highway, but a journey into a strange wilderness, where 
the explorers often get lost. Rigor should be a signal to the 
historians that the maps have been made, and the real ex-
plorers have gone elsewhere.”

                                          - W.S. Anglin
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Soulful StrainsSoulful Strains
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Voice for Alms 
 

Sightless is the old beggar, 
He looks up at the sky. 
He makes a call to God, 

He makes a call to passer-by. 
 

A tattered gown he maintains 

And a tin vessel he shakes, 
Creating music for his words; 

He then waits. 
 

Loud and clear 
His words, magnify lament, 
Strength and unshared grief; 

He stops rarely. 
 

He calls on our mercy. 
A note higher he sings, 

Vibrations trembling hearts, 
Ably pierce the sky. 

 
He seldom visits busy streets, 

To sing for a penny; 
Every count pause his music 
And he blesses one in prayer. 

 
We overlook the street singer, 

He gives his voice in exchange. 
As I walk away, 

The music of his performance fades. 
 

 

 

অপেক্ষা 
 

সাদা কাল া ফ্রেম 
ফ্রেলম োকা শহলেে এল ালমল া অল গল , 
কুয়াশা ঢাকা সকা , স্বপ্ন ফ্রদখা আজও বালক ; 

বয়লসে ফ্র া োঁয়ায় রুগ্ন ফ্র াখ দ'ুটি 
আজও কাউলক ফ্রখা োঁলজ । 

 
োস্তাে পালশে পলুোল া  যাম্পলপাস্ট 
টিমটিম কলে আল া লদলে...... 

দা োঁলিলয় আল  আজও 
ভাঙা গিাে স্মলৃিল হ্ন হলয় । 

বাগাল ে ফ্রগা াপগুল , হাোলে িালদে ফ্রসৌন্দর্ য ; 
পালকযে ধুল ায় ঢাকা ফ্রবঞ্চটি, আজও খাল  । 

 
িবুও আকাশ পাল  ফ্র লয় োকা 

অলপক্ষায়........... 
 

Fatima Intekhab
B.Sc, 2nd Year

Dept. of Mathematics
St. Xavier’s College (Autonomous), Kolkata

Saptarshi Roy
B.Sc, 3rd Year

Dept. of Mathematics
St. Xavier’s College (Autonomous), Kolkata
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A Lullaby in the Dark 
 

 

An existence without a face, 

Walking the same road at a fluid pace; 

When destiny plays its hand, 

Time slips away like sand. 

 

Who am I? What is the meaning of identities? 

My world crumbles beneath my feet. 

I am floating between infinite realities; 

I sense none who belong to my creed. 

 

I am everything I choose to be, 

I am everybody I kill, every being I set free. 

I am a product of my violence; 

The mirage I decide to see through my lens. 

 

I am water mixed with blood, 

Friend or foe, who knows? 

I am just playing my part; 

My presence preceded by ominous crows. 

 

I will take the form you choose 

I am here for war, to make a truce 

I am a concept, an intangible being 

I am snow turned red, your voice when you sing. 
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Crossword PuzzleCrossword Puzzle
Find the Mathematicians in the below crossword puzzle 
corresponding to their quotes: 
 
V C N A S P T D F P N C E T T 
E D E D E T E C T I V G V S S 
N C A N A H C E M L P E F D I 
G M B V H T C S M O J O E O T 
I F U R I H C A E O N R H E N 
N A I C I D U M H E F G C I A 
E S L C N A H N V H C C R L D 
E C D O C T C I R L A A A E R 
K U R T G O D E L O R N Z T A 
W E R T N R C H E B T T R E P 
E N V W E T L T R U E O I L J 
I T A E N I T P R C Z R N H V 
Y Y M L C S H I F R O D T T R 
T I S A A C N E W T O N I A N 
A T U A N G R T S A Y D C H A 

 
 
Hints: 
      [1]     "We must know, we will know." 
      [2]     "We can’t prove every true statement in Mathematics." 
      [3]     "We build too many walls and not enough bridges." 
      [4]     "This man diagonalized things to a bigger infinity." 
      [5]     "The Imitation Game, The Enigma and War." 
      [6]    "The Game of Life." 
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Brain TeasersBrain Teasers
1. 𝑓𝑓: 𝑅𝑅 → 𝑅𝑅 be a function such that (𝑓𝑓(𝑥𝑥)𝑛𝑛) is a polynomial for 𝑛𝑛 = 2,3,4… 

Does it follow that f(x) is also a polynomial? 
 

2. Let us assume that π is a positive rational (say𝑝𝑝
𝑞𝑞 , 𝑞𝑞 ≠ 0). For Positive integer n, we define 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛(𝑝𝑝−𝑞𝑞𝑥𝑥)𝑛𝑛

𝑛𝑛! , 𝑥𝑥 ∈ ℝ. Again we define  

𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓 ′′(𝑥𝑥) + 𝑓𝑓(4)(𝑥𝑥)−. . . +(−1)𝑛𝑛𝑓𝑓(2𝑛𝑛)(𝑥𝑥)        
Show that: 

a. F(0) and F(π) are integer. 
b. ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑛𝑛𝑥𝑥 𝑑𝑑𝑥𝑥𝜋𝜋

0 =  𝐹𝐹(0) + 𝐹𝐹(𝜋𝜋) 
c. Hence argue that π cannot be positive rational. (Think about the   negative case). 
 

3. k is a positive integer. Then find ∑ (𝒌𝒌+𝒊𝒊
𝒊𝒊 )𝟐𝟐𝒌𝒌−𝒊𝒊𝒌𝒌

𝒊𝒊=𝟎𝟎 . 
 

4.  Let n and k be fixed positive integers, and a be an arbitrary non-negative integer. Choose a 
random k element subset X of {1,2,3,…,k+a} uniformly (that is all k elements subsets are 
chosen with same probability) and independently of X, choose random n-elements subset Y of 
{1,2,…,k+a+n} uniformly. Prove that, the probability P (min(Y)>max(X)) is 
independent of a. 

 
5. Let S denote the set of all primitives of a function 𝑓𝑓: 𝑅𝑅 → 𝑅𝑅. Show that M along with the 

operation ∗: 𝑆𝑆2 → 𝑆𝑆 defined as 𝐹𝐹 ∗ 𝐺𝐺 = 𝐹𝐹 + 𝐺𝐺(2021) forms an abelian group and it is 
isomorphic to the additive group of real numbers. 

 
6. Suppose that f is a function on the interval [1, 3] such that −1 ≤ 𝑓𝑓(𝑥𝑥) ≤ 1 for all 

and∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 03
1  . Find the supremum of ∫ 𝒇𝒇(𝒙𝒙)

𝒙𝒙 𝒅𝒅𝒙𝒙𝟑𝟑
𝟏𝟏  . 

 
7. Show that every sequence 𝑎𝑎1, 𝑎𝑎2, . . . , 𝑎𝑎𝑚𝑚𝑛𝑛+1 of mn+1 distinct real numbers contains either an                      

increasing subsequence of length m+1 or a decreasing subsequence of length n+1.   
 

8. Find the number of ways 66 identical coins can be separated into three nonempty piles so         
that there are fewer coins in the first pile than in the second pile and fewer coins in the second 
pile than in the third pile. 

 
9. The repeating decimals 0. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎̅̅ ̅  and 0. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎̅̅ ̅̅ ̅  satisfy 0. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎̅̅ ̅ +  0. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎̅̅ ̅̅ ̅ =

 33
37   where a, b, and c are (not necessarily distinct) digits. Find the three digit 
number abc. 

 

10. Let 𝐴𝐴 ∈  𝑀𝑀𝑛𝑛(𝐶𝐶) be an upper triangular matrix. And 𝐷𝐷 ∈ 𝑀𝑀𝑛𝑛(𝑅𝑅) is a diagonal matrix with non 
negative entries. Show that if 𝑇𝑇∗𝑇𝑇 = 𝐷𝐷 𝑎𝑎𝑛𝑛𝑑𝑑 𝑇𝑇𝐷𝐷 = 𝐷𝐷𝑇𝑇 , and then T is also diagonal. 
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V C N A S P T D F P N C E T T 

E  1D E D E T E C T I V 4G V S S 

N C A N A H C E M L P E F D I 

G M B V H T C S M O 6J O E O T 

I F U R I H C A E O N R H E N 

N A I C I D U M H E F G C I 5A 

E S L C N A H N V H C C R L D 

E C D O C T C I R L A A A E R 

2K U R T G O D E L O R N Z T A 

W E R T N R C H E B T T R E P 

E N V W E T L T R U E O I L J 

I T A E N I T P R C Z R N H V 

Y Y M L C S H I F R O D T T R 

T 3I S A A C N E W T O N I A N 

A T U A N G R T S A Y D C H A 

 
 

Answers: 
         [1]   David Hilbert 
         [2]   Kurt Godel 
         [3]   Isaac Newton 
         [4]   Georg Cantor 
         [5]   Alan Turing 
         [6]   John Conway 
 
 
 

Answer of Crossword PuzzleAnswer of Crossword Puzzle

ßßεεααccΘΘnn



To be continued . . .

ßßεεααccΘΘnn


	Column of Alumnus
	RANDOM GRAPHS, SOCIAL NETWORKS AND MATHEMATICS AROUND IT
	COULD THE GREATEST EVER MATHEMATICAL CONJECTURE BE FALSE ?
	PURE MATHEMATICS 
	MATHEMATICS OF STELLAR EVOLUTION : LANE-EMDEN  EQUATION


	Column of
	Professor
	ROMANTIC LOVE - A MATHEMATICAL DISCUSSION
	PUZZLES, GAMES 


	Articles
	NEWTON-PEPYS PROBLEM : FROM A DIFFERENT VIEWPOINT
	HOW TO KILL THE KING ?
	BUILDING A MATHEMATICAL QUILT
	A GLIMPSE INTO MERSENNE PRIMES
	A TECHNIQUE OF AGE                 DETERMINATION OF PLANATARY   SURFACES
	SATISFYING FACTORIALS


	Soulful Strains
	Canvas of Creation
	Camera Lucida
	Ad Infinitum
	Crossword Puzzle
	Brain Teasers

