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Abstract
This thesis deals with mainly two issues. Firstly we have studied gravitational entropy
on different astrophysical and cosmological systems. Secondly the thesis focuses on the
generalized thermodynamic laws in gravitational physics. As a result the entire thesis
has four parts, where in the first part, titled "Prologue", we have introduced the subject
matter in brief. Subsequently in the second part, titled as "Gravitational Entropy
of Astrophysical and Cosmological systems", describes our works regarding grav-
itational entropy. The third part deals with the generalized laws of thermodynamics in
presence of gravity titled as "Universal Thermodynamics" and finally the conclusion
of this thesis is described in the last part titled as "Epilogue".
The very first part of the thesis titled as "Prologue", is the introductory part of the
thesis where we have discussed the background of the entire investigation carried out by
us. Here we have briefly mentioned the entire history of the thermodynamic studies in
gravitational physics, especially emphasising on the thermodynamics of Black holes and
horizons in general. In relation to that we have introduced different types of cosmologi-
cal horizons and their thermodynamics also. Then we briefly introduced the generalized
second law of thermodynamics and summarized our works on this subject matter. Sub-
sequently we introduced the concept of Gravitational entropy and discussed different
proposals of it. Finally we ended this part with a summary of our works regarding the
Gravitational entropy.
In the second part of the thesis, titled as "Gravitational Entropy of Astrophysical
and Cosmological systems", the works on gravitational entropy is described in three
chapters.
In the first chapter of the second part we have examined the validity of a gravita-
tional entropy proposal in the context of accelerating black hole solutions of the Einstein
field equations. We have adopted a phenomenological approach proposed by Rudjord et
al,[107] in which the Weyl curvature hypothesis is examined using the proposal for the
gravitational entropy. We have considered the C-metric to represent the accelerating
black holes. We then evaluated the corresponding gravitational entropy and the gravi-
tational entropy density for different types of accelerating black holes. We discussed the
merits and demerits of such an analysis and commented on the possible resolutions of
the issue.
In the second chapter we have investigated the entropy of the free gravitational field for
some well known isotropic and anisotropic cosmologies. We have utilized the definition
of gravitational entropy proposed by Clifton, Ellis and Tavakol,[106] where the 2-index
square root of the 4-index Bel-Robinson tensor is taken as the energy momentum tensor
for the free gravitational field. We have then examined whether in the vicinity of the
initial cosmic singularity, the ratio of the energy density of free gravity to that of mat-
ter density goes to zero or not, examining the Penrose’s conjecture on Weyl curvature.
We showed that whenever this is true, the gravitational entropy increases monotonically
with the structure formation of the universe. Then we discussed the conditions for which
the Weyl curvature hypothesis is valid or otherwise.
The third chapter of this part of the thesis deals with the validity of two different
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proposals of gravitational entropy (GE) in the context of traversable wormhole solutions
of the Einstein field equations. The first one is the phenomenological approach proposed
by Rudjord et al [107, 109], which is a purely geometric method of measuring gravi-
tational entropy. The latter one is the Clifton-Ellis-Tavakol (CET) proposal [106] for
the gravitational entropy which arises in relativistic thermodynamics, and is based on
the Bel-Robinson tensor, that represents the effective super-energy-momentum tensor
of free gravitational fields. The application of the CET proposal can provide unique
gravitational entropies for spacetimes of Petrov type D and N only, whereas the geo-
metric method can be applied to almost every kind of spacetime, although it has little
relation with thermodynamics. We have argued that for any traversable wormhole to be
physically realistic, it should have a viable GE. We have found that the GE proposals
do provide us a consistent measure of GE in several of wormholes solutions.

Subsequently we have the third part of the thesis, titled as "Universal Thermo-
dynamics", where there are two chapters.
In the first chapter of this part we have examined the validity of the generalized second
law of thermodynamics (GSLT) in an expanding Friedmann Robertson Walker (FRW)
universe, which is filled with different variants of Chaplygin gases. We have assumed
that the universe is a closed system bound by the cosmological horizon. Then we pre-
sented the general prescription of the entire analysis and in the subsequent part we have
analysed the validity of the GSLT on the cosmological horizons for different Chaplygin
gas models. We found that for the cosmological apparent horizon, some of these models
always obey the GSLT. Whereas the validity of GSLT on the cosmological event horizon
depends on the free parameters of the respective models.
Finally, in the second chapter of the third part we have dealt with the evolution of
the FRW universe. Here the universe is filled with a variant of the Chaplygin gas model,
namely the variable modified Chaplygin gas (VMCG). We have begun with a thermody-
namical treatment of the equation of state of the VMCG and obtained its temperature as
a function of redshift z. We have shown that the results are consistent with similar works
on other types of Chaplygin gas models. In addition to the derivation of the exact ex-
pression of temperature we also used observational data to determine the redshift at the
epoch of transition from the decelerated to the accelerated phase of the universe. Then
the values of other relevant parameters like the Hubble parameter, the equation-of-state
parameter and the speed of sound are obtained in terms of the redshift. Subsequently
these are compared with the results obtained from previous works on other Chaplygin
gas models. We took the redshift of photon decoupling as z ≃ 1100, and used this value
to calculate the temperature of decoupling.
Finally in the last part titled as "Epilogue" we have concluded our thesis and discussed
our thoughts on it.
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“It being an established fact that the object and the subject,’ that are fit
to be the contents of the concepts "you" and "we" (respectively), and are
by nature as contradictory as light and darkness, cannot logically have any
identity, it follows that their attributes can have it still less. Accordingly, the
superimposition of the object, referable through the concept "you", and its
attributes on the subject that is conscious by nature and is referable through
the concept "we" (should be impossible), and contrariwise the superimpo-
sition of the subject and its attributes on the object should be impossible.
Nevertheless, owing to an absence of discrimination between these attributes,
as also between substances, which are absolutely disparate, there continues
a natural human behaviour based on self-identification in the form of "I am
this" or "This is mine". This behaviour has for its material cause an unreal
nescience and man resorts to it by mixing up reality with unreality as a result
of superimposing the things themselves or their attributes on each other.”

— Adi Shankaracharya, Brahmasutra Adhyasa-bhashya
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Part I.

Prologue
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Gravity is one of the fundamental forces of nature which has always been the most
familiar one to human beings like us, right from our childhood. Yet, it is through the
studies of numerous scientists and philosophers that the understanding of gravity has
developed, and led humanity to the outer space through numerous scientific missions.
Beginning with the Newtonian model of gravitation to Einstein’s theory of gravity, and
further beyond, the real nature of gravity still seems to be a bit of a mystery.
Gravity is so fundamental that the concept of spacetime is integral to it, and since all
other forces interact among themselves within the same spacetime, it means that in
every interaction, however small it maybe, gravity is omnipresent in the background.
Unfortunately, despite the fact that a unified theory exists for other fundamental forces,
unification with gravity seems illusive and difficult. Nonetheless, we know that gravity
plays a crucial role from the very beginning of the universe in creating gas clouds, stars,
galaxies and planets, and finally culminating in the creation of the “supermassive” black
holes.
In numerous recent observations starting from the previous century, the general theory
of relativity, in which gravity is viewed as a consequence of the geometry of spacetime
due to massive objects, has proved to be accurate, and it is the basic fundamental theory
for all our astronomical and astrophysical studies. Despite the elegance of this theory
or perhaps because of it, although scientists have tried to unify this theory with the
standard model of particle physics to create a single theory of quantum gravity to rep-
resent all the four fundamental forces of nature, but success have not yet been achieved.
The modern theory of Loop Quantum Gravity and String theory are the results of such
investigations, which provided further insights into a better theoretical understanding
of the problem. This line of investigation is still lying within the realms of theoretical
formulations without any solid experimental evidence, but it has shown us that gravita-
tional field can be described statistically in terms of micro states.

In these circumstances, it is very natural for one to seek for other alternative expla-
nations of the phenomenon of gravity, among which the thermodynamic description
seems to be very effective.

0.1. Thermodynamics in presence of gravity
The work on relativistic thermodynamics in flat spacetime was initiated way back in 1926
by Lenz in Zeitschrift fuer Physik [2], where he investigated the equilibrium between the
radiation and matter in an Einstein’s closed universe. Lenz had based his work on the
principles of ordinary thermodynamics in flat spacetime, which was inadequate for the
physics of curved spacetimes that encompasses Einstein’s theory of gravity (GR). This
work of Lenz was mentioned by R.C. Tolman in his 1928 paper [1], where he extended
the principles of thermodynamics so as to hold in curved spacetime, where the methods
of general relativity (GR) are applicable [3, 4, 5].
Tolman considered two principles expressed in the form of equations (true for all sets of
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coordinates) which would serve as the analogues of the ordinary first and second laws of
thermodynamics in GR. The First Law was the analogue of the law of the conservation of
energy in GR (Vanishing divergence of energy-momemtum tensor, converted into tensor
densities and integrated over 4-volume). For the Second Law he considered two guiding
principles:
(1) The postulate must be expressible in a form valid in all coordinate systems. (2) It
must be equivalent to the ordinary second law of thermodynamics in flat spacetime.

Consequently Tolman defined the entropy vector in the following way:
At any given point in spacetime defined by the equation

Sµ = ϕ0
dxµ

ds
,

where dxµ/ds refers to the macroscopic motion of matter (or energy) at the point, and
ϕ0 is the proper density of entropy as measured by a comoving observer, the divergence
of Sµ integrated over 4-volume (which includes the universe as a whole as an isolated
system) should be positive or zero, subjected to the validity of the conservation of the
energy-momentum tensor. Tolman in his subsequent papers [6, 7] and in several other
works studied this subject in detail and expanded on it.

0.2. Black hole as a thermodynamic system
The thermodynamic studies of gravity gathered momentum in a major way with the
semi classical study of black holes (BHs) which tells us that these objects emit thermal
radiation (unlike cold classical BHs) and behave like black bodies, which indicated that
black holes behave like thermodynamical systems. To save the sacred second law of
thermodynamics (SLT), the Hawking-Bekenstein (HB) entropy was introduced [39] on
the event horizon of a blackhole, where the temperature of the BH is proportional to
the surface gravity and the entropy is proportional to the area of the horizon. Thus,
the foundations of the laws of black hole thermodynamics in physics were established
when it was found that the BH temperature, mass and entropy satisfied the first law of
thermodynamics [169, 170].
Black hole physics provides us with at least two examples in which the second law of
thermodynamics may be violated or transcended. In the first example, provided by
J.D. Bekenstein [38], we imagine that someone drops a cup of coffee into a black hole
(BH). Then the outside observer would see that the environment entropy went down
because the information of that cup will never leave the BH to the outside observer.
This scenario depicts a perfect situation where BH mechanics violates the second law
of thermodynamics. The second method was proposed by R. Geroch [36] where we
lower a mass tied by a string towards a BH and let the radiation from the rest mass
energy get sucked into the BH, and then again haul the body up. In this process the BH
remains unchanged and some amount of energy from the suspended mass gets completely
converted into the work done. This again violates the second law of thermodynamics.
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This posed a problem for the whole framework of physics. In the year 1972 Jacob D.
Bekenstein argued that the only solution to this problem is to endow the black hole
with some entropy so that the sum of the BH entropy plus the environment entropy
always increases [38]. In the next paper [39], Bekenstein argued that the BH area and
entropy have similarities in the sense that both of them always increase in any physical
transformation. Floyd and Penrose also suggested that the area increase maybe a general
feature of BH transformations [31, 32]. Independently Christodoulou had also shown
that no process whose ultimate outcome is the capture of a particle by a Kerr BH can
result in the decrease of irreducible mass of BH. He showed that the irreducible mass
is proportional to the area of the BH. Christodoulou’s results are consistent with that
of Penrose and Floyd, i.e. in most of the processes, BH area increases [33, 34, 35].
Hawking also illustrated a general proof that the BH surface area cannot decrease in
any physical process. For a system of BHs, Hawking’s theorem says that the area of the
individual BHs cannot decrease and for the merger of two BHs, the resulting BH area
cannot be smaller than the sum of the initial area of the individual BHs [37]. From the
works of all the above authors and many others, it became clear that BH area behaves
like entropy, and that a BH has some kind of mechanism which resembles the second
law of thermodynamics in action, which is: for any closed thermodynamic system, the
changes take place in the direction of increasing entropy. For the BHs, therefore, its area
represents the measure of its entropy.
In 1973, the four laws of BH mechanics were proposed by J.M. Bardeen, B. Carter and
S. W. Hawking where they argued that the area of the BH and its surface gravity in
their derived relations resembles entropy and temperature, respectively, in the ordinary
laws of thermodynamics. Based on this, they proposed the famous four laws [44] as
mentioned below.

• The Zeroth Law: The surface gravity (κ) of a stationary BH is constant over
the Event Horizon.

• The First Law: Any two neighbouring stationary axisymmetric solutions con-
taining a perfect fluid with circular flow and a central black hole are related by

∂M = κ

8π
∂A + ΩH∂JH + Φ∂Q. (0.1)

It is very interesting to note that the quantity κ

2π
is analogous to temperature.

Similarly the area of the event horizon A/4 is analogous to entropy. Here T is
known as the Hawking temperature and S is the HB entropy.

• The Second Law: The event horizon area (A) of individual black hole does not
decrease with time, i.e.

∂A = 0. (0.2)
In other words, if two black holes gets merged, the area of the final event horizon
of the resulting BH is greater than the sum of the areas of the individual initial
horizons, i.e.

Af > Ai1 + Ai2 (0.3)

16



• The Third Law: No matter how idealized the procedure is, it is impossible to
reduce the surface gravity of a stationary BH (κ) to zero by a finite sequence of
operations.

In 1974, Hawking showed by applying quantum mechanics that BHs are not cold but are
hot bodies and its temperature is proportional to the horizon surface gravity, and that
BHs are not eternal objects but they will evaporate one day via the Hawking radiation
[40]. This established the surface gravity as a measure of the physical temperature of
BH. This result became the final cornerstone of black hole thermodynamics.
Consequently physicists searched for a possible connection between BH thermodynamics
and the gravitational field equations. Ted Jacobson [171] was the first to derive the Ein-
stein field equations from the proportionality of the black hole entropy and the horizon
area together with the fundamental relation δQ = TdS. He showed that this relation is
valid for all the local Rindler causal horizons through each space time point, with δQ
and T as the energy flux and Unruh temperature with respect to (wrt) an accelerated
observer just inside the horizon. Subsequently, Hayward [172] proposed a unified first
law of black hole dynamics and relativistic thermodynamics for spherically symmetric
GR.

0.3. Thermodynamics on horizons
Within a few years after Hayward’s work, Thanu Padmanabhan [173] used the Einstein
equations to formulate the first law of thermodynamics on “any” horizon for a general
static spherically symmetric space time. Therefore the Einstein’s equation for the grav-
itational field has a deep connection with the thermodynamics on horizons. Further to
this, the uncanny similarity between the laws of BH mechanics and the laws of thermo-
dynamics are also well known. In addition, if we are to believe that gravity has some
microscopic degrees of freedom, then a strong connection between quantum physics and
gravity must be there.
Clearly, the role of thermodynamics is not limited solely to BH mechanics / BH horizon
as it has important cosmological implications which cannot be avoided if we assume the
laws of thermodynamics to be true.

On this subject, Verlinde did a detailed study [19] and observed that for the radiation
dominated FLRW universe, the Friedmann equation can be expressed in the form of the
Cardy-Verlinde formula, which is an entropy formula for a conformal field theory. Here
radiation is described by a conformal field theory. Consequently, the entropy formula
describing the thermodynamics of radiation in the universe has the same mathematical
form of the Friedmann equation, which describes the dynamics of spacetime. Verlinde’s
studies indicates some hidden relation between thermodynamics and Einstein equations.
In a four dimensional de Sitter spacetime with radius l, there exists a cosmological event
horizon. This horizon is like a black hole horizon and is associated with thermodynamic
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properties, like the Hawking temperature T and entropy S [20],

T = 1
2πl

, S = A

4G
, (0.4)

where A = 4πl2 is the cosmological horizon area and G is the Newton constant. For
an asymptotic de Sitter space such as a Schwarzschild-de Sitter space, there still exists
the cosmological horizon, for which the area law of the entropy holds S = A/4G, where
A denotes the cosmological horizon area, and whose Hawking temperature is given by
T = κ/2π, where κ is the surface gravity of the cosmological horizon. Suppose that
some matter with energy dE passes through the cosmological horizon, one then has

−dE = TdS. (0.5)

Interestingly the cosmological horizon in the Schwarzschild-de Sitter space satisfies the
relation (0.5).

Therefore, on the cosmological scale, the SLT can be applied by assuming that the
universe is a closed system bounded by horizon, preferably the cosmological apparent
horizon.
Cai and Kim [174] applied the first law of thermodynamics to the apparent horizon of a
FRW universe and considered the Bekenstein entropy on the apparent horizon, leading
to the Friedmann equations for a universe with any spatial curvature. They applied the
formulae of entropy for the static spherically symmetric BH horizons in Gauss-Bonnet
gravity and in Lovelock gravity, to obtain the Friedmann equations in these theories. An-
other important work is where Paranjpe et al [175] demonstrated that the gravitational
field equations for the Lanczos-Lovelock action in a spherically symmetric spacetime
can also be expressed in the form of the first law of thermodynamics. Then Akbar and
Cai [176] extended the work of Cai and Kim to the cases of scalar–tensor gravity and
f(R) gravity, and subsequently showed that [177] the Friedmann equation of a FRW
universe can be rewritten as the first law of thermodynamics on the apparent horizon
of the universe. They also extended their procedure to the Gauss-Bonnet and Lovelock
gravity. Again Cai and Cao [178] showed that the unified first law proposed by Hayward
for the outer trapping horizon of a dynamical black hole, can be applied to the apparent
horizon of the FLRW universe for the Einstein’s field theory, Lovelock gravity, and the
scalar-tensor theories of gravity.

0.3.1. Cosmological Horizons
Before discussing the thermodynamics on cosmological horizons, we briefly mention be-
low the relevant types of cosmological horizons for the FLRW universe.
The FLRW spacetimes are spherically symmetric about every spatial point. This makes
it trivially spherically symmetric. Nevertheless FLRW spacetimes are very important as
cosmological models. Though they are simpler than the BH spacetimes but they still
have horizons. Usually, FLRW spacetimes possess time-dependent apparent horizons
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and are very interesting as well as convenient from our point of view. As event horizons
(EHs) are relevant both in the study of BHs and cosmology, we will begin by describing
such cosmological EHs.

Event Horizon

An event horizon (EH) is defined as the proper distance to the most distant event wrt a
comoving observer that he will ever see. Therefore if we want to define the EH we have
to know the entire future of the universe from time t to infinity. This also means that the
EH is defined globally, not locally. The EH can therefore be said to be the complement
of the particle horizon (which we will discuss a bit later). In GR, the FLRW event
horizon exists only for accelerated universes with P < −ρ/3 (for perfect fluid). So the
event horizon does not exist for every FLRW spacetime. Also the cosmological event
horizon turns out to be a null surface [202] which evolves according to the equation

ṘEH = HREH − 1, (0.6)

and the acceleration of the event horizon is governed by the following relation:

R̈EH = (Ḣ + H2)REH − H. (0.7)

Thus the EH is more of a mathematical concept rather than a real viable horizon, the
best example of such a mathematical entity being in the case of the Schwarzschild BH.
A more relevant and astrophysicaly viable horizon is the Apparent horizon.

Apparent Horizon

The cosmological apparent horizon depends on the observer, much like horizons in flat
space, acting as a sphere which surrounds the observer and hides information. The
FLRW apparent horizon for a comoving observer is a sphere with the proper radius

RAH = 1√
H2 + k/a2

, (0.8)

where k is the curvature of universe. The apparent horizon (AH), unlike the EH, is not a
null surface in general. Consequently the AH evolves according to an equation different
from the EH evolution equation. The AH evolution equation is given by the following:

ṘAH = 4πHR3
AH(P + ρ). (0.9)

The AH is null iff the cosmic fluid resembles the cosmological constant, i.e. P = −ρ. If
the EoS parameter is less than −1, the AH becomes timelike, but if the fluid is phantom-
type, the AH becomes spacelike. Unlike the black hole dynamical horizons which are
usually spacelike, cosmological horizons on the other hand are timelike in the presence
of non-exotic matter [202].
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Trapping Horizon

The FLRW apparent horizon comes under the general class of trapping horizons when
Lℓθn = R/3 > 0 just as in the BH case. Here R is the Ricci scalar of FLRW spacetime.
Consequently, in the theory of GR, for a perfect fluid the condition of a trapping horizon
becoming an AH becomes, Lℓθn = 8π

3 (ρ − 3P ) [115, 202].

Particle Horizon

As discussed before, the particle horizon (PH) at time t complements the EH, i.e., it is
a sphere centered on and around the comoving observer at r = 0. From the definition
itself we can understand that the particle horizon encapsulates all the particle signals
that have reached the observer from the time of the Big Bang (t = 0) to the time t. From
the definition it is evident that the PH is observer dependent. The cosmological particle
horizon is also a null surface similar to EH. The cosmological PH evolves according to
the equation

ṘP H = HRP H + 1, (0.10)
and the acceleration of the particle horizon is given by

R̈P H = −4π

3 (ρ + 3P )RP H + H. (0.11)

Here, RP H(t) must diverge as t approaches it’s maximum value, possibly undefined,
otherwise there will always be some region in spacetime which will be inaccessible to the
comoving observers.

Hubble Horizon

Lastly we will mention the Hubble horizon, which is basically a conceptual horizon
indicating the boundary between particles that are moving slower and faster than the
speed of light wrt an observer at a given time. The radius of the Hubble horizon is given
by:

RH = 1
H

. (0.12)

This expression also gives us an estimate of the radius of curvature of a FLRW space.
This is also used as an estimate of the radius of the event horizon during the slow-roll
inflation, where the universe was close to being a de Sitter space. Another interesting
feature is that the Hubble horizon coincides with the AH for spatially flat universes and
also with the horizon of a de Sitter space. Unfortunately, this horizon does not have
much physical significance from a thermodynamic view point [202].

0.3.2. Thermodynamics of Cosmological Horizons
Gary Gibbons and Stephen Hawking [20] have demonstrated that the BH thermody-
namics is much more general than just the black holes. They also showed that the
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cosmological event horizons, like BH horizons, also possesses an entropy and tempera-
ture. Later t’Hooft and Susskind utilized the laws of BH thermodynamics to argue for
a general holographic principle, which states that any consistent theory of gravity and
quantum mechanics must be lower-dimensional.
The thermodynamics is not well defined for the event horizon of FLRW spacetimes.
Therefore we will discuss the AH. The AH is often considered as a causal horizon (hori-
zon which separates the spacetime into two parts causally between observable events and
non-observable events) associated with a gravitational temperature, entropy and surface
gravity in dynamical spacetimes. If these arguments are true, then the cosmological
horizon should also have the same characteristics. A review of the thermodynamical
properties of the FLRW AH, as well as the derivation of the Kodama vector, Kodama-
Hayward surface gravity, and the Hawking temperature in various coordinate systems,
are available in Ref. [203]. The Kodama-Hayward temperature of the FLRW apparent
horizon is given by the following expression:

kBT =
(
ℏG

c

)
RAH

3 (3P − ρ), (0.13)

and the Kodama-Hayward surface gravity (κKodama) is given by

κKodama = RAH

12 R. (0.14)

The entropy on the AH in FLRW spacetime would be

SAH =
(

kBc3

ℏG

)
π

H2 + k/a2 =
(

kBc3

ℏG

)
AAH

4 . (0.15)

The Hamiltonian constraint gives SAH = 3
8ρ

and ṠAH = 9H

8ρ2 (P + ρ).
All the four generalized thermodynamic laws can be written for the cosmological AH.
Though the zeroth law is obvious, the rest of the laws are still debatable [202, 204]. The
thermodynamics of AH is very interesting. The AH thermodynamics is formulated for
the horizons that are changing in an arbitrary manner. However, it is pertinent to state
that the equilibrium thermodynamics could only be applied for physical systems that
are in equilibrium or in near-equilibrium states. Therefore the appropriate application
should be for slowly varying apparent horizons. Apparent horizons are important also
for that fact that they seem to have implications for the BH information loss paradox,
and are considered as an alternative to firewalls, but this viewpoint needs much more
development.
The thermodynamics of cosmological horizon is a vast subject right now and each and
every argument has many pros and cons, which is beyond the scope of this brief intro-
duction. But one must proceed very carefully before defining any quantity on cosmic
horizons. The details have been omitted intentionally for the sake of brevity.
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0.4. Universal thermodynamics
Now we will introduce our works related to gravitational thermodynamics in the sub-
sequent portion of this report. As mentioned before, the introduction of the Hawking-
Bekenstein entropy on the black hole event horizon paved the way for the complete
development of the laws of black hole thermodynamics. The concept of BH entropy was
necessary so that the second law of thermodynamics (SLT) could be preserved. Another
interesting thing to note from the section of BH thermodynamics which appeared earlier
in this thesis, is that, the BH temperature and the entropy are proportional to the sur-
face gravity on the horizon and the area of the horizon, respectively. Moreover, the BH
temperature, entropy and the mass of the BH were found to satisfy a relation very simi-
lar to the first law of thermodynamics (0.1). This means that the BH thermodynamical
parameters rather the BH thermodynamics itself is deeply connected to the geometry
of the BH horizon. All these visible similarities prompted physicists to find a possible
connection between black hole thermodynamics and the gravitational field equations.
As mentioned before, the works of Ted Jacobson becomes very important because the
Einstein field equations are obtained from the proportionality of the black hole entropy
to the horizon area. Interestingly this is valid for all local Rindler causal horizons, with
an energy flux and the Unruh temperature seen by an accelerated observer just inside
the horizon [171]. The contribution of T. Padmanabhan in this field is also very signif-
icant as he formulated the first law of thermodynamics on “any” horizon for a general
static spherically symmetric spacetime, using the Einstein field equations [173]. Thus,
the similarity between the laws of thermodynamics and the laws of black hole mechanics
on one hand and the equivalence between the first law and the Einstein equations on
the other side, reveals a strong connection between gravity and thermodynamics.

0.4.1. Generalized Second Law of Thermodynamics
As in the case of ordinary thermodynamics, in the same way, we can apply the SLT on
the cosmological scale by assuming that the universe is a closed system bounded by a
horizon, presumably the cosmological apparent horizon. This extension is known as the
generalized second law of thermodynamics (GSLT).
Although the apparent horizon is physically much more relevant in a dynamical situation,
but the event horizon is also significant. As we know that in a dynamically evolving
universe or a black hole, both of these horizons appear, so it is justified to check for
the validity of the GSLT on these horizons for a universe filled with various types of
matter and/or energy, which in our case of study is assumed to be a fluid modelled
as the Chaplygin gas. Chaplygin gas models are very versatile and useful cosmological
models suitable for representing the different phases of evolution of the universe. In
fact, the necessity of a model which can explain the evolutionary history of the universe
successfully, led to the birth of the Chaplygin gas cosmology. Since the Chaplygin
gas models can describe the accelerating expansion of the universe in the current epoch,
hence they provide us a satisfactory model to take into account the role of the mysterious
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Dark Energy (DE).

0.4.2. Our Works with Chaplygin gas models
With the above utility in mind, we have compared the different Chaplygin gas models
from a thermodynamic point of view, to identify the viability of the different models
in this group, and have commented on their merits [152]. For this purpose, we have
examined the validity of the GSLT both on the cosmological apparent horizon and the
cosmological event horizon for the different Chaplygin gas models. As each model in
this group is distinct in its own way, we obtained different cosmological consequences
for the validity of the GSLT on both the horizons in these models.

For the analysis of the cosmological apparent horizon, we have considered the Kodama-
Hayward temperature because the Kodama-Hayward surface gravity is more relevant for
the description of dynamical horizons. In the case of the Variable modified Chaplygin
gas (VMCG), we have already determined the temperature of the FLRW universe in
another paper (described in the next part of this report). This temperature is the bulk
temperature. In this paper, after calculating the Kodama-Hayward temperature of the
VMCG dominated FLRW universe for the apparent horizon, we have compared these
two types of temperatures to see how their behavior affects the thermodynamics of the
universe. Here we want to mention that our approach is much more generalized com-
pared to other works as we did not assume any specific definition of surface gravity (i.e.,
temperature) for our analysis in the case of the cosmological event horizon.

The analysis of generalized thermodynamics of FLRW universe for models like the
Variable modified Chaplygin gas (VMCG), New Variable modified Chaplygin gas (NVMCG),
Generalized cosmic Chaplygin gas (GCCG), and Modified cosmic Chaplygin gas (MCCG)
on both the cosmological horizons is also a completely new study. For each case we have
given a detailed study and determined the conditions of validity of GSLT on the cos-
mological horizons. This will help further analysis on such models in future from the
thermodynamic point of view.

In the last work we have specifically focused on the Variable modified Chaplygin gas
(VMCG) and its evolution in the FLRW universe. In this paper [205] we have studied the
evolution of the FLRW universe filled with variable modified Chaplygin gas (VMCG).
We used the thermodynamical treatment on the equation of state of the VMCG, and ob-
tain its temperature as a function of redshift. We showed that the results are consistent
with similar works on other types of Chaplygin gas models. This temperature is used in
the previously described thermodynamic analysis of Chaplygin gas models. In addition
to deriving the exact expression of temperature of the fluid in terms of the boundary
conditions and redshift, we also used observational data to determine the redshift at
the epoch of transition from the decelerated to the accelerated phase of expansion of
the universe. The values of other relevant parameters like the Hubble parameter, the
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equation-of-state parameter and the speed of sound are obtained in terms of the redshift
parameter, and these values are compared with the results obtained from previous works
on Modified Chaplygin gas (MCG) and other Chaplygin gas models for the various val-
ues of n permitted by thermodynamic stability (where n is the index of VMCG). We
also assumed the present value of temperature of the microwave background radiation
to be given by 2.7K, and the parameter A in the equation of state is taken as 1/3, since
it corresponds to the radiation-dominated phase of the universe. As it is known that the
redshift of photon decoupling is 1100, we used this value to calculate the temperature
of decoupling.

0.5. Gravitational Entropy

0.5.1. Initial entropy problem leads to violation of second law of

thermodynamics in cosmology
As mentioned before, the SLT is one of the most fundamental laws of physics, according
to which an ensemble of ideal gas molecules confined to a closed chamber will always
spread to fill the entire space once the chamber is opened, thereby achieving a state
of maximum entropy. However, this is not true when we take the matter content of
the entire universe as a fluid. The universe started from a homogeneous state. Then
density fluctuations appeared due to the effects of gravity, which in course of evolution
led to structure formation in the universe. This is in contrast to the SLT, according
to which the matter should spread out rather than clump together. There is another
issue in the evolution of the universe as it was much hotter in the beginning and there
was thermal equilibrium between matter and radiation (hence the perfect blackbody
spectrum in the early universe) making it a state of maximum entropy. Apparently this
makes the evolution of the universe impossible because a universe which is already in a
state of maximum entropy at the beginning is not expected to follow the SLT during its
evolution. This poses a fundamental problem in cosmology, that the universe violates
the second law of thermodynamics in its evolution driven by gravity if we only consider
the usual thermodynamic entropy.

0.5.2. What is Gravitational entropy and why is it necessary
In order to resolve this problem, Sir Roger Penrose proposed the concept of “Gravita-
tional entropy” (GE) which represents the entropy carried by the free gravitational field.
This GE is also contributing to the total entropy of the universe along with the usual
thermodynamic entropy (TE). The main idea is that - in the initial epoch of the uni-
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verse the total entropy (which includes both the GE and the TE) was very small and as
time passed, with structure formation in the universe, the GE contribution in the total
entropy increases and approaches a maximum value at the end state of the universe.

0.5.3. Weyl Curvature hypothesis
To measure this GE, Penrose proposed the famous “Weyl Curvature hypothesis” (WCH)
according to which the GE can be determined by a function of the Weyl tensor, because
the Weyl tensor is a measure of inhomogeneity/anisotropy of the universe, and the in-
homogeneity increases in course of time as gravitational condensation leads to structure
formation in the universe.
To put it in a proper perspective, we know that in Einstein’s general theory of relativity
the gravitational field can be split into two parts i.e., the Ricci and the Weyl parts. The
former i.e., the Ricci tensor is related to the energy-momentum tensor (via the gravi-
tational field equations), where standard definitions for the thermodynamic entropy of
matter fields hold. Therefore counting the entropy of spacetime in the Ricci curvature
would mean counting the entropy in the matter fields twice. As the objective is to
characterise the gravitational entropy of free gravitational fields, we therefore must con-
centrate on the Weyl part of the curvature tensor. This gives us a tensorial description
of the free part of the gravitational field, which is present even in the absence of matter
fields. Moreover, after the introduction of GE [103, 104], scientists found that when
applied to the Schwarzschild black hole, it reproduces the HB entropy, indicating that
the BH entropy is also linked to the free gravitational field. In fact, for any proposal
of GE it is necessary to check whether the proposal can reproduce the HB entropy for
Schwarzschild black hole or one can use this to normalize the free parameters in the
GE proposal. Taking the WCH as the guide, many proposals were introduced to offer a
measure of GE. We must emphasize here that the study of GE is a fairly new and open
field. Consequently, a universal definition of GE (if it exists at all) which is applicable
to every spacetime, is yet to be formalized.

0.5.4. Different proposals for Gravitational entropy
Several definitions have been proposed for GE using the WCH as a guiding principle.
One can simply take the Weyl curvature tensor and construct scalars out of it to represent
the GE. Similarly, we can have the Weyl curvature scalar and take its ratio to the Ricci
scalar. In this way, several other definitions can be used to represent the GE, among
which we have used the ratio of the Weyl curvature scalar to the Kretschmann scalar as
one of the measure of GE as described and elaborated in [107, 109]. Using this ratio as
the measure of GE, studies were conducted to show that this definition indeed produces
the HB entropy for the stationary BHs. In fact, it can also be used to study the evolution
of GE in worm hole (WH) spacetimes. From the definition it becomes clear that it is a
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purely geometric description and one can use it to compute the GE for the BH horizon
and see whether it is producing the desired HB entropy for any spacetime.

0.5.5. Weyl scalar proposal
In this proposal [107] we consider a surface integral to determine the gravitational en-
tropy of a black hole which can be described as the following:

Sσ = ks

∫
σ

Ψ.dσ, (0.16)

where σ represents the surface of the horizon of a black hole and the vector field Ψ is
given by

Ψ = Per, (0.17)
with er as a unit radial vector. The scalar P is defined in terms of the Weyl scalar (W )
and the Krestchmann scalar (K) in the form

P 2 = W

K
= CabcdCabcd

RabcdRabcd
. (0.18)

In order to compute the gravitational entropy, we have to consider the 3-space. There-
fore, we consider the spatial metric which is defined as

hij = gij − gi0gj0

g00
, (0.19)

where gµν is the concerned 4-dimensional space-time metric and the indices denote spatial
components, i, j = 1, 2, 3. Therefore the infinitesimal surface element is expresses as:

dσ =
√

h√
hrr

dθdϕ. (0.20)

Utilizing the Gauss’s divergence theorem, we can now find out the entropy density [107]
as

s = ks|∇.Ψ|. (0.21)
There are other conditions to be satisfied by the GE in order to be plausible, as

for example, the GE should be non-negative and it should vanish whenever the Weyl
tensor vanishes (which follows from the WCH). Moreover the GE must measure the
local anisotropy in the free gravitational field and it must increase monotonically with
the structure formation in the universe. Finally, it is expected that the GE and the
entropy of matter fields are to be additive, to render the total entropy to be an extrinsic
quantity of the fields.
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0.5.6. CET proposal
All of the scalars and the ratio of scalars considered earlier suffer from different limita-
tions but they were a natural progression and a necessity for the study of the evolution
of GE in a gravitating system. Subsequently it was discovered that the Bel-Robinson
(BR) tensor is quite suitable for describing the energy density of the free gravitational
field [86, 87, 88, 158]. So attempts were made to propose a measure of GE involving the
Bel-Robinson tensor [27, 48]. As the BR tensor is constructed from the Weyl tensor and
its dual tensor, therefore proposals using the BR tensor also follows the WCH. Such a
definition was proposed by Clifton, Ellis and Tavakol (CET) [106] which is based on the
square root of the BR tensor. The advantage of this proposal is that it was constructed
using the considerations of relativistic thermodynamics and they showed that the CET
scheme is observer dependent, i.e., the GE will change according to the observer we
choose. It is important to mention that unlike the purely geometric measures of scalar
ratios, the CET proposal is useful in algebraically special spacetimes of Petrov type D
and N. This is because the CET proposal gives us a unique GE only for such space-
times. Finally, in the context of the CET proposal we want to mention that although
the geometric measures are applicable to every kind of spacetime, the CET proposal
gives us a more nuanced GE as it was constructed from relativistic thermodynamics.
Another interesting feature of the CET proposal is that one can choose the gravitational
temperature independently, as the proposal only defines the gravitational energy den-
sity from the BR tensor. It is important to mention that a number of recent studies
have been done by different authors using the CET proposal on different gravitational
systems [90, 70, 71], which analyzed the scope of the proposal in detail.
In the subsequent portion of this thesis our contribution in this field is being discussed
in detail.

0.6. Our works on gravitational entropy
In one of our studies we have considered a special class of BHs that are accelerating [61].
We know that BHs in the universe are not static. In fact, they are indeed in acceleration
due to the effects of gravity, however small it maybe. This becomes more important when
BH binary mergers are happening, where BHs are rapidly accelerating. Also, there are
cases in which after the collision of two galaxies, some BHs leave the galactic system
and travels solo. In such a case also, acceleration becomes very important. We have
showed that for the accelerating BHs, the chosen geometric definition of GE (which we
call the ‘Weyl scalar proposal’) produces plausible results and reproduces HB entropy
on the horizon and it follows the WCH. In this work we considered the C-metric and
its variations, namely four different types of accelerating BHs: non-rotating accelerating
BH, non-rotating charged accelerating BH, uncharged rotating BH and charged rotating
BH. We also evaluated the GE density and showed that in most of the cases we get a
viable GE density. The definition of GE density can be found from the definition of
GE using the Gauss’s divergence theorem. Accelerating BHs are mathematically special
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as it contains a conical singularity due to acceleration, and as the acceleration tends
to zero, the deficiency factor of this conical singularity reduces to unity rendering the
spacetime metric to one of stationary BH. In the four different cases, the deficiency
factors are different and contain the BH parameters like mass, charge and spin along
with acceleration. This deficiency factor prevents the usual polar coordinate ϕ to run
from zero to 2π. Instead it runs from zero to 2πC where C is the deficiency factor.
We have analyzed each case in detail and have shown that for accelerating BHs also we
obtain HB-like entropy, establishing that GE reduces to BH entropy even for accelerating
BHs.

In another work [154] we studied several cosmological models representing the different
epochs of evolution of the universe and showed that the measure of GE is viable and
is consistently increasing with time with the evolution of the universe. In this study
we validated the WCH in the cosmological context using the previously described CET
proposal. We also investigated the ratio of free gravitational energy density to matter
energy density in the vicinity of the initial singularity to check whether it is decreasing to
zero following the WCH, and found it to be exactly so. In this work, first we used the 1+3
covariant decomposition of the spacetime and discussed the relevant Ricci identities and
Bianchi identities to show the two-way relationship between the shear and the electric
part of Weyl tensor. The electric part of the Weyl tensor together with the shear drives
the evolution of shear and the matter density, which then drives the evolution of the
electric Weyl. Consequently, we clearly identified and showed the physical processes
behind the generation of gravitational entropy, i.e., it is indeed generated from the
anisotropies of the universe. Here we have considered various kinds of spacetimes to
show that the ‘CET-proposal GE’ is evolving consistently in each of them. In the
very beginning we considered the FLRW spacetime and showed that the GE is zero
where the gravitational temperature is related to the cosmological constant in the dark
energy dominated era. Next, moving from the previously discussed isotropic case to
the anisotropic case, we considered the LRS Bianchi I model, where two of the spatial
directions have the same scale factor. Here we analyzed the conditions for the validity
of WCH in detail and computed the conditions for a monotonous GE function. Next,
we examined a spacetime model proposed by Liang representing the early phase of the
evolution of the universe, i.e., the radiation dominated epoch. In the analysis of the
expansion anisotropy, we found that the spacetime begins from an isotropic singularity
and the anisotropy increases with time as the universe expands. The GE found in this
case completely corresponds with the evolution of other parameters and we showed that
the GE indeed increases with the structure formation in the universe. Subsequently
we studied the spatially inhomogeneous models with irrotational dust as source, i.e.,
the class II Szekeres solution of the Einstein’s field equations, which is a Petrov type
D spacetime, as all the previous spacetimes. (This is because the CET proposal gives
us unique GEs only for Petrov type D and type N spacetimes). Here also we found a
consistently behaving GE with the gravitational temperature decreasing with time i.e.,
near the initial singularity the gravitational temperature blows up whereas with time it
consistently decreases to lower values. Further, we found that the gravitational energy
density blows up in the vicinity of the initial singularity and with time decreases with the
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evolution of the universe. Finally, we considered a spacetime which fits a general class of
solutions of the Einstein’s field equations but simple enough to study a perturbed kind of
flat spacetime (like the perturbed FLRW spacetime) i.e., Bianchi VIh model. We showed
that the deviation from conformal flatness and isotropy lead us to an inhomogeneous
spacetime where gravitational entropy is generated. Without any exception, in this case
too, the GE goes to zero near the initial singularity and with increasing time it increases
with the increase in structure formation. In conclusion, we found that the CET proposal
of the GE conforms to the WCH and provides us a robust tool to analyze the evolution
of GE in such Petrov type D cosmological spacetime models.

In our next study [155] we have taken the previously discussed geometric proposal of
the GE where the different combinations of the Weyl scalar to other curvature scalars
are used with the thermodynamically derived CET proposal and compared these two
approaches in traversable WH systems. Here we wanted to study the GE proposals in
the more exotic gravitational systems and to see whether they can give us a consistent
measure of GE. Considering some of the Lorentzian traversable wormholes along with
the Brill solution for NUT wormholes and the AdS wormholes, we have evaluated the
gravitational entropy for these systems. As more and more studies are revealing that
these systems may exist as possible astrophysical objects, the study of traversable WHs
becomes important in the context of GE. If traversable WHs do exist, then the differ-
ent proposals of GE must be tested on them and for any traversable wormhole to be
physically realistic, it should have a viable GE. We found that the GE proposals do give
us a consistent measure of GE in several of them. This also means that the existence
of a viable GE strictly depends on its definition. We also wanted to see whether the
CET proposal can give us a satisfactory measure of GE when applied to WHs, because
such studies were not available in the literature. For this purpose, we examined various
traversable wormholes from the simplest to the more involved ones. The Ellis wormhole
is the simplest case we have analysed. It is a zero-mass traversable WH which connects
two asymptotically flat regions at its throat. There have been many proposals for the
energy source of such WHs making it not only an ideal toy model to study, but also
having rich physical content. In the Weyl scalar proposal, we found a viable measure of
GE but for the CET proposal, though the gravitational energy density is positive, the
gravitational temperature turned out to be zero, making the computation of GE impos-
sible. To get a more suitable observer we chose the class of observers who crosses the
WH from one side to another in the equatorial plane and still found a null gravitational
temperature. For this reason, in the Ellis WH case, we considered another temperature
function according to the Gibbs one form and computed the GE and found that the GE
obtained in the two different proposals (Weyl scalar proposal and CET proposal) behave
a bit differently although both of them are giving viable results. In the same spirit we
have considered the exponential metric WH, which is a much more general spherically
symmetric spacetime, and is traversable at the throat. Here also we computed both the
Weyl scalar proposal GE and the GE using the CET proposal and compared them. In
both the cases the WH have a viable GE to work with. There are WHs which can also
mimic BHs, and the simplest case of such a WH is the Darmour-Solodukhin (DS) WH.
This is of great physical interest as it is not only traversable, but also because it mimics
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the Schwarzschild BH to an outside observer, for all practical purposes. In the spheri-
cally symmetric static cases, both the exponential metric WH and the DS WH possess
rich mathematical and physical structure. For the DS WH also we found that the GEs
in both proposals are viable and compared them. In order to examine the consequence
of charge present in the WH system and to study its effect on the GE of that system, we
considered the Maldacena ansatz, which connects two oppositely charged BHs. Here the
CET proposal despite having a nonzero gravitational temperature gives us a null GE. As
for the stationary cases, we considered the Brill NUT WH (where both the magnetic and
electric charges are present), and is an extension of the Reissner-Nordström solution with
a Newman–Unti–Tamburino (NUT) parameter. This enabled us to study the behavior
of GE in Einstein-Maxwell systems, where the NUT parameter controls the WH neck.
We have utilized the geometric definition of the GE (Weyl scalar proposal) to check the
validity of GE as this spacetime is not strictly a Petrov type D and we found that the
GE is behaving consistently. Extending this to cosmological settings, we considered an
AdS NUT WH in the presence of a negative cosmological constant, so as to study the
effect of the cosmological constant on the GE of NUT WH. Here again we have used two
geometric proposals of GE, specifically the ratio of Weyl scalar to Kretschmann scalar
and simply the Weyl scalar. In both the cases we found desirable behaviors of the GE.
We have also discussed briefly the Tolman law in WH spacetimes and concluded that
the gravitational temperature and the Tolman temperature are related. Thus, we have
considered these widely different traversable WHs, in order to study the behavior of GE
explicitly in such scenarios, and to determine whether the GE proposals considered by
us are physically viable or not.
It becomes clear from our extensive studies that the concept of GE can be applied to
various types of spacetimes and it can provide us a viable measure of GE. Our compar-
ative study also showed that GE of a system strictly depends on the definition used,
despite following the WCH. Here we must clarify once again that the GE is different
from the usual thermodynamic entropy (TE). The utility of GE cannot be understated
as it not only explains the entropy problem in the early universe but also gives us a func-
tion which can keep track of the structure formation with the evolution of the universe.
Further, the GE can reproduce entropy of black holes and other cosmological objects.

Hence the entire thesis can be divided into two parts.
The initial part of this thesis is dedicated to the study of the purpose and utility of
gravitational entropy (GE). There we briefly discuss different types of proposals of GE
and then we have discussed in detail our three works on GE using two of these proposals.
First, we described our work on the accelerating BHs and then the cosmological models.
Lastly, we presented our work on the traversable WHs and comparison of different GE
proposals in this context.
The later part of the thesis is dedicated to the thermodynamic study of gravitational
systems, especially to the generalized laws of thermodynamics. In this part we first
described the motivation and utility of such a theory and then described our other two
works on this study. Firstly, we present a very detailed thermodynamic study of various
kinds of Chaplygin gas models on cosmological horizons with their validity conditions.
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Lastly, we end our study with the description of the thermodynamic study of the vari-
able modified Chaplygin gas.

Now that I have introduced our work briefly, I will describe all the studies mentioned
above in detail with proper citations in the subsequent chapters of this thesis.
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Gravitational Entropy of Astrophysical

and Cosmological systems
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1. Gravitational entropy of

accelerating black holes
The contents of this chapter have been published in a journal, details of which are given
below:

JOURNAL REFERENCE: International Journal of Modern Physics D, Vol. 29,
No. 5 (2020) 2050034 (24 pages)

ARTICLE NAME: On the gravitational entropy of accelerating black holes
DOI: 10.1142/S0218271820500340

The paper is quoted below:

“

1.1. Introduction
The C-metric was independently discovered by Levi-Civita [8] and Weyl [9] in 1917.
Ehlers and Kundt [10] while working on the classification of the degenerated static
vacuum fields, constructed a table in which this metric was placed in the slot “C”,
leading to the name ‘C-metric’. Kinnersley and Walker [11] pointed out that this metric
is an exact solution of Einstein’s equations which describes the combined electromagnetic
and gravitational field of a uniformly accelerating object having mass m and charge e,
and is an example of “almost everything”. It is for this reason that the C-metric is the
focus of our attention in this paper.

Dray and Walker [12] showed that this spacetime represents the gravitational field
of a pair of uniformly accelerating black holes. Letelier and Oliveira [13], studied the
static and stationary C-metric and sought its interpretation in details, in particular
those cases charaterized by two event horizons, one for the black hole and another for
the acceleration. For spacetimes with vanishing or positive cosmological constant, the
C-metric represents two accelerated black holes in asymptotically flat or de Sitter (dS)
spacetime, and for a negative Λ term, depending on the magnitude of acceleration [14],
it may represent a single accelerated black hole or a pair of causally separated black
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1. Gravitational entropy of accelerating black holes

holes which accelerate away from each other [15]. The acceleration A is due to forces
represented by conical singularities arising out of a strut between the two black holes or
because of two semi-infinite strings connecting them to infinity [16, 17].

The second law of thermodynamics is one of the most fundamental laws of physics.
We know that for an ensemble of ideal gas molecules confined to a closed chamber, the
gas spreads out to fill the entire space once the chamber is opened, thereby reaching a
state of maximum entropy. However, in the case of the universe with its matter content
modelled as a fluid (or gas), this is not exactly true. The universe was born from a
very homogeneous state and later on, small density fluctuations appeared due to the
effect of gravity, that ultimately led to the formation of structures in the universe. This
evolution is contrary to our expectations from the thermodynamic point of view, since
the “gas” condenses into clumps of matter, instead of spreading out. Moreover in the
past, the universe was much hotter and at some point of time, matter and radiation
were in thermal equilibrium, and the entropy was maximum. So, how can the entropy
increase if it was maximum in the past? It appears that if the evolution of the universe
is dominated solely by gravity, then we may encounter a violation of the second law of
thermodynamics, if we are considering the contribution of the thermodynamic entropy
only.

To resolve this problem and to provide a proper sequence to the occurrence of grav-
itational processes, Penrose [103] proposed that we must assign an entropy function to
the gravitational field itself. He suggested that the Weyl curvature tensor could be used
as a measure of the gravitational entropy. The Weyl tensor Cαβγδ in n dimensions is
expressed as [157]

Cαβγδ = Rαβγδ − 1
(n − 2)(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ) +

1
(n − 1)(n − 2)R(gαγgβδ − gαδgβγ), (1.1)

where Rαβγδ is the covariant Riemann tensor, Rαβ is the Ricci tensor and R is the
Ricciscalar.

According to Penrose, initially after the ‘big bang’, when the universe started evolving,
the Weyl tensor component was much smaller than the Ricci tensor component of the
spacetime curvature. This hypothesis sounds credible because the Weyl tensor is inde-
pendent of the local energy–momentum tensor. Moreover, the universe was in a nearly
homogeneous state before structure formation began, and the FRW models successfully
describe this homogeneous phase of the evolution. Further, the Weyl curvature is zero
in the FRW models. However, the Weyl is large in the Schwarzschild spacetime. Thus
we need a description of gravitational entropy, which should increase throughout the
history of the universe on account of formation of more and more structures leading to
the growth of inhomogeneity [104, 105], and thus preserve the second law of thermody-
namics. But there is still doubt regarding the definition of gravitational entropy in a way
analogous to the thermodynamic entropy, which would be applicable to all gravitational
systems [106]. The definition of gravitational entropy as the ratio of the Weyl curva-
ture and the Ricci curvature faces problems with radiation [25]. Once Senovilla showed
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1. Gravitational entropy of accelerating black holes

that the Bel-Robinson tensor is suitable for constructing a measure of the “energy” of
the gravitational field [56], several attempts were made to define the gravitational en-
tropy based on the Bel-Robinson tensor and also in terms of the Riemann tensor and
its covariant derivatives [27, 48].

Many efforts has been made to explain the entropy of black holes using the quantized
theories of gravity, such as the string theory and loop quantum gravity. However, in
this paper we will handle the problem from a phenomenological approach proposed in
[107] and expanded in [109], in which the Weyl curvature hypothesis is tested against
the expressions for the entropy of cosmological models and black holes. They considered
a measure of gravitational entropy in terms of a scalar derived from the contraction of
the Weyl tensor and the Riemann tensor, and matched it with the Bekenstein-Hawking
entropy [169, 39]. In our current work we will consider the accelerating black holes only,
which represent more realistic black holes for several reasons. For instance, collision of
galaxies is a rather common phenomenon occurring in the universe, and it inevitably
leads to black hole mergers with the associated production of gravitational waves [42].
In such situations, we may imagine that the black holes at the centre of these galaxies
are accelerating towards each other, although we can always think of any black hole as
accelerating since no black hole is gravitationally isolated from the neighboring massive
systems. Moreover, a static black hole may be considered as the limiting case of an
accelerating black hole. Thus the study of accelerating black holes is very important.
Here we will investigate whether the calculations for gravitational entropy proposed in
[107] and [109] can be applied in this context. The organization of our paper is as
follows: Sec. II deals with the definition of gravitational entropy and Sec. III enlists
the metrics of accelerating black holes considered by us. Sec. IV provides the main
analysis of our paper where we evaluate the gravitational entropy and the corresponding
entropy density for these black holes. We discuss our results in Sec. V and present the
conclusions in Sec. VI.

1.2. Gravitational Entropy
The entropy of a black hole can be described by the surface integral [107]

Sσ = ks

∫
σ

Ψ.dσ, (1.2)

where σ is the surface of the horizon of the black hole and the vector field Ψ is given by

Ψ = Per, (1.3)
with er as a unit radial vector. The scalar P is defined in terms of the Weyl scalar (W )
and the Krestchmann scalar (K) in the form

P 2 = W

K
= CabcdCabcd

RabcdRabcd
. (1.4)
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1. Gravitational entropy of accelerating black holes

In order to find the gravitational entropy, we need to do our computations in a 3-space.
Therefore, we consider the spatial metric which is defined as

hij = gij − gi0gj0

g00
, (1.5)

where gµν is the concerned 4-dimensional space-time metric and the Latin indices denote
spatial components, i, j = 1, 2, 3. So the infinitesimal surface element is given by

dσ =
√

h√
hrr

dθdϕ. (1.6)

Using Gauss’s divergence theorem, we can easily find out the entropy density [107] as

s = ks|∇.Ψ|. (1.7)

1.3. Accelerating Black holes

1.3.1. Non-rotating black hole
The C-metric in spherical type coordinates is given by

ds2 = 1
(1 − αrcosθ)2

(
−Qdt2 + dr2

Q
+ r2dθ2

P
+ Pr2sin2θdϕ2

)
, (1.8)

where P = (1 − 2αmcosθ), and Q =
(

1 − 2m

r

)
(1 − α2r2). This metric represents

an accelerating massive black hole, which has two coordinate singularities, one is at
ra = 1

α
and the other is at rh = 2m. The rh = 2m singularity stands for the familiar

event horizon, but the ra = 1
α

singularity is the acceleration horizon formed due to the
acceleration of the black hole [165]. Here m is the mass of the black hole and α is the
acceleration parameter. The important feature of this metric is that ϕ ∈ [0, 2πC) unlike
the full 2π range for stationary black holes because of the conical singularity arising due
to acceleration. Here C = 1

(1 + 2αm) is the deficiency factor in the range of ϕ. If the
acceleration of the black hole vanishes, i.e., α = 0, then the deficiency factor C becomes
unity and ϕ reduces to the conventional polar coordinate running from 0 to 2π. All the
accelerated black hole metrics discussed below also have this property.

1.3.2. Non-rotating charged black hole
We now consider the metric representing charged accelerating black holes. The charged
C-metric in spherical type coordinate is [165]

ds2 = 1
(1 − αrcosθ)2

(
−Qdt2 + dr2

Q
+ r2dθ2

P
+ Pr2sin2θdϕ2

)
, (1.9)
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1. Gravitational entropy of accelerating black holes

where P = (1 − 2αmcosθ + α2e2cos2θ), and Q =
(

1 − 2m

r
+ e2

r2

)
(1 − α2r2). This is

just the charged version of the previous metric with the parameter e representing the
charge of the black hole. We can also think of it as an accelerated Reissner–Nordstrom
(RN) black hole, because as α → 0, the metric reduces to the familiar RN metric. In
the case of this metric also, we have r = 1

α
as the acceleration horizon, and because of

the introduction of charge, we have the outer and inner horizons at r± = m±
√

m2 − e2.

Here the corresponding deficiency factor is given by C = 1
(1 + 2αm + α2e2) .

1.3.3. Rotating black hole
The general line element for an accelerating rotating black hole is given by

ds2 = 1
Ω2

(
−Q

R
(dt − asin2θdϕ)2 + R

Q
dr2 + R

P
dθ2 + P

R
sin2θ[adt − (r2 + a2)dϕ]2

)
,

(1.10)
where Ω = 1 − αrcosθ, R = r2 + a2cos2θ, P = (1 − 2αmcosθ + α2a2cos2θ), and Q =
(a2 − 2mr + r2)(1 − α2r2). This metric represents the rotating version of the C-metric,
and contains three coordinate singularities, namely r± = m ±

√
m2 − a2, representing

the outer and inner horizons, and r = 1
α

representing the acceleration horizon [165] with

the deficiency factor C = 1
(1 + 2αm + α2a2) .

1.3.4. Rotating charged black hole
This is the charged version of the previous accelerating rotating metric. It may be
regarded as the most general case among all the black holes considered by us, and is
given by

ds2 = 1
Ω2

(
−Q

R
(dt − asin2θdϕ)2 + R

Q
dr2 + R

P
dθ2 + P

R
sin2θ[adt − (r2 + a2)dϕ]2

)
,

(1.11)
where Ω = 1 − αrcosθ, R = r2 + a2cos2θ, P = (1 − 2αmcosθ + α2(a2 + e2)cos2θ),
and Q = (a2 + e2 − 2mr + r2)(1 − α2r2). In this case the deficiency factor is given by
C = 1

(1 + 2αm + α2(a2 + e2)) . As in the previous case, the acceleration horizon is at

r = 1
α

, however, the outer (or inner) horizons are located at r± = m ±
√

m2 − a2 − e2.
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1. Gravitational entropy of accelerating black holes

1.4. Analysis

1.4.1. Non-rotating accelerating black hole
We know that the Kretschmann scalar for a given spacetime geometry is defined by the
relation

K = RabcdRabcd, (1.12)
where Rabcd is the covariant Riemann curvature tensor. For the C-metric (1.8), the
Kretschmann scalar turns out to be

Kc = 48m2(αrcosθ − 1)6

r6 . (1.13)

The Weyl scalar is defined by
W = CabcdCabcd, (1.14)

where the Cabcd is the Weyl curvature tensor. For the C-metric (non-rotating black hole)
the Weyl scalar is evaluated as

Wc = 48m2(αrcosθ − 1)6

r6 . (1.15)

This result is expected since the Ricci tensor for this metric turns out to be zero. As
the Riemann tensor can be decomposed into the Ricci and the Weyl parts according to
equation (1.1), the vanishing Ricci component renders the Riemann and Weyl tensors
identical as evident from equations (1.13) and (1.15). The scalar function P is defined
by the relation (3.3) as

P 2 = CabcdCabcd

RabcdRabcd
. (1.16)

For this C-metric, we get P 2 = 1. Therefore we assume that P = +1 for our entropy
calculations, since the entropy must be non-negative.

Now the spatial section corresponding to this metric is

hij = diag
[ 1
(1 − αrcosθ)2(1 − 2m/r)(1 − α2r2) ,

r2

((1 − αrcosθ)2(1 − 2αmcosθ)) ,
r2sin2θ(1 − 2αmcosθ)

(1 − αrcosθ)2

]
, (1.17)

with the determinant given by

h = sin2(θ)r5

(α2r2 − 1)(−r + 2m)(αrcos(θ) − 1)6 . (1.18)

Therefore, the infinitesimal surface element has the form

dσ =
√

h√
hrr

dθdϕ = r2sinθ

(αrcosθ − 1)2 dθdϕ. (1.19)
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1. Gravitational entropy of accelerating black holes

We are now in a position to calculate the magnitude of the gravitational entropy on
the event horizon H0 at the location rh = 2m for this metric, which is

Sgrav = ksr
2
h

∫ π

θ=0

sinθ

(αrhcosθ − 1)2 dθ
∫ 2πC

ϕ=0
dϕ = ks

4πCr2
h

(1 − r2
hα2) = ks

4πr2
h

(1 − r2
hα2)(1 + 2αm) .

(1.20)
From equation (1.20) it is evident that the gravitational entropy is proportional to the
area of the event horizon of the black hole, as in the case of the Bekenstein-Hawking
entropy [169, 39]. Here C = 1

(1 + 2αm) is the deficiency factor in the limit of ϕ as it

runs from 0 → 2πC (as mentioned earlier). In FIG. 1.1, we have shown the variation of
the total entropy on the horizon with the acceleration parameter α.

Similarly we can compute the entropy density as

s = ks
1√
h

∂

∂r

(√
h

P√
hrr

)
= 2ks

r

√
(1 − α2r2)

(
1 − rh

r

)
. (1.21)

In the above equation (1.21), inserting α = 0, we get the entropy density for the
Schwarzschild black hole. In FIG. 4.4, the dependence of the gravitational entropy
density corresponding to this metric on other relevant parameters have been indicated.
From equation (1.21) we can see that the zeroes of the gravitational entropy density func-
tion are located at the acceleration horizon r = 1

α
, and at the event horizon r = 2m,

which is clearly evident from FIG. 4.4. Specifically, FIG. 4.4(a) shows that for α = 0,
the acceleration horizon goes to infinity where the entropy density reduces to zero, and
at the event horizon r = 2, the entropy density becomes zero. Similarly for α = 0.5, the
acceleration horizon and the event horizon coincide at r = 2, where the entropy density
becomes zero. FIG. 4.4(b) indicates that for α = 0.25, the acceleration horizon lies at
r = 4 and the event horizon is at r = 2, the entropy density going to zero at both these
places, and diverges at the singularity r = 0 which is in agreement with equation (1.21).

1.4.2. Non-rotating charged accelerating black hole
The Kretschmann scalar for the non-rotating charged black hole given by the metric
(1.9) is evaluated to be

K =
56 (αrcosθ − 1)6

(
cos2θα2e4r2 + 10

7

(
e2 − 6

5mr
)

re2αcosθ + e4 − 12
7 e2mr + 6

7m2r2
)

r8 ,

(1.22)
and the corresponding Weyl scalar is

W = 4
3

(αrcosθ − 1)4 (5cos2θα2e2r2 − sin2θα2e2r2 + α2e2r2 − 6mαcosθr2 − 6e2 + 6mr)2

r8 .

(1.23)
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1. Gravitational entropy of accelerating black holes

Figure 1.1.: Plot showing the variation of the total gravitational entropy for the acceler-

ating non-rotating BH with respect to the acceleration parameter α, where

we have taken m = 1 and ks = 1.

Therefore the quantity P is given by the expression

P 2 = 6(e2αcosθr + e2 − mr)2

(7cos2θα2e4r2 + 10αrcosθe4 − 12αr2cosθe2m + 7e4 − 12e2mr + 6m2r2) . (1.24)

The spatial metric for this case is

hij = 1
(1 − αrcosθ)2 diag

 1(
1 − 2m

r
+ e2

r2

)
(−α2r2 + 1)

,
r2

β
, βr2sin2θ

 , (1.25)

where
β =

(
1 − 2αmcosθ + α2e2cos2θ

)
.

Consequently the determinant of the spatial hij metric is given by

h = − sin2θr6

(α2r2 − 1)(e2 − 2mr + r2)(αrcosθ − 1)6 , (1.26)

and the infinitesimal surface element is

dσ =
√

h√
hrr

dθdϕ = r2sinθ

(αrcosθ − 1)2 dθdϕ. (1.27)

Next we calculate the gravitational entropy on the horizon H0 at rh = r± = m ±√
m2 − e2, which turns out to be

Sgrav = ksr
2
h

∫ π

θ=0

P (rh, θ)sinθ

(αrhcosθ − 1)2 dθ
∫ 2πC

ϕ=0
dϕ = ks(4πr2

±)
(1 + 2αm + α2e2)

∫
θ

P±(θ)sinθdθ

2(αr±cosθ − 1)2 ,

(1.28)
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1. Gravitational entropy of accelerating black holes

(a) (b)

Figure 1.2.: (a) Plot showing the variation of the gravitational entropy density for an

accelerating non-rotating BH with respect to the acceleration parameter

α and the radial coordinate r, for m = 1 and ks = 1. (b) Plot showing

the variation of the gravitational entropy density for the accelerating non-

rotating BH with respect to the radial coordinate r, where α = 0.25, m = 1,

and ks = 1.

where the quantity P± corresponds to the value calculated for r±.
From equation (1.28) we find that the gravitational entropy is proportional to the

area of the event horizon of the black hole, just as in the case of the Bekenstein-Hawking
entropy. We can further check the validity of our result by setting α = 0 in (1.28), to see
whether it leads us to the desired expression for the entropy of the Reissner–Nordstrom
(RN) black hole. This exercise yields the result

SRN
grav = ks(4πr2

±)
∫

θ
P RN

± (θ)sin θ

2 dθ. (1.29)

We can easily see that P RN
± (θ) = P±(α = 0) = 6e4 − 12e2mr + 6m2r2

7e4 − 12e2mr + 6m2r2 , and therefore
the gravitational entropy for the RN black hole is

SRN
grav = ks(4πr2

±)
√

6e4 − 12e2mr + 6m2r2

7e4 − 12e2mr + 6m2r2

∫
θ

sin θ

2 dθ = ks(4πr2
±)
√

6e4 − 12e2mr + 6m2r2

7e4 − 12e2mr + 6m2r2 .

(1.30)
This result matches with the expression of gravitational entropy for the RN black hole
derived in [109] by Romero et al. The entropy density for the non-rotating charged black
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hole is obtained as

s =
16

√
6ks

√
(−α2r2 + 1) (e2 − 2mr + r2)

r2
(

7e4α2 cos2 θr2 + 10
(

e2 − 6mr

5

)
rαe2 cos θ + 7e4 − 12e2mr + 6m2r2

)3/2

×
[
cos3 θα3e6r3 + 15e4α2 cos2 θr2

8

(
e2 − 13mr

10

)
+ 9rαe2 cos θ

4

(
e4 − 11e2mr

6 + m2r2
)

+ 7e6

8 − 3mr

4

(
13e4

4 − 3e2mr + m2r2
)]

. (1.31)

If in this expression we substitute e = 0, and consider the absolute value of this quantity,
then we get back the expression (1.21) for the entropy density of the accelerating black
hole. In FIG. 4.5 we have shown the dependence of the gravitational entropy density of
the non-rotating charged black hole on different parameters appearing in (1.31). From
FIG. 4.5(a) we can determine the zeroes of the gravitational entropy function (1.31),
e.g., for α = 0, θ = π

2 , the acceleration horizon goes to infinity and by solving the
entropy density function, we obtain the zeroes at r = 0.13, 1.87, and also at r = 0.18,
where r = 0.13, 1.87 are the horizons. Again from (1.31), using α = 0.45, θ = π

2 , we find
that the zeroes of the entropy density function are located at the acceleration horizon
r = 1

α
= 2.22, and at the event horizon r = m ±

√
m2 − e2 = 1, which is evident from

FIG. 4.5(b). The additional zero can be found by solving for the roots of the second
factor in (1.31) which gives us the only real root at r = 0.74. We have also analyzed
the case for α = 0.25 (shown in FIG. 1.4) from which we can identify the zeroes clearly,
i.e., at the acceleration horizon r = 1

α
= 4, and at the horizons r = 0.13, 1.87. Further,

another zero arises from the second term of the entropy density function at r = 0.19.
The overall behavior is also as we expected, that is, the entropy density diverges near
the r = 0 singularity and it increases inside the horizon, encountering some zeroes in
between.

1.4.3. Rotating accelerating black hole
Using the metric for the rotating accelerating black hole we have calculated the Ricci
tensor, which turns out to be zero. Thus the Kretschmann scalar K and the Weyl scalar
W are identical. Thus we have

K = W = 48m2 (αr cos (θ) − 1)6 ( (a4α + a3
)

cos3 θ + 3a2r (aα − 1) cos2 θ

−3ar2 (aα + 1) cos θ − r3 (aα − 1)
)

×((a4α − a3) cos3 θ − 3a2r (aα + 1) cos2 θ − 3ar2 (aα − 1) cos θ + r3 (aα + 1))
(r2 + a2 cos2 θ)6 . (1.32)
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(a) (b)

Figure 1.3.: (a) Plot showing the variation of the gravitational entropy density for the ac-

celerating non-rotating charged BH with respect to the acceleration parame-

ter α and the radial coordinate r, where m = 1, ks = 1, e = 0.5, and θ = π

2 .

(b) Plot showing the variation of the gravitational entropy density for the

accelerating non-rotating charged BH with respect to the radial coordinate

r and the charge e, where α = 0.45, m = 1, ks = 1, and θ = π

2 .

Therefore P 2 = W

K
= 1, i.e. P = +1. Hence the total gravitational entropy in this case

is given by

Sgrav = ks

∫
σ

Ψ.dσ = ks

∫
σ

dσ = ks

∫ π

θ=0

∫ 2πC

ϕ=0

√
gθθgϕϕdθdϕ. (1.33)

The entropy evaluated at r± is obtained as

Sgrav± = ks

4πC(r2
± + a2)

(1 − α2r2
±) = ks

4π(r2
± + a2)

(1 − α2r2
±)(1 + 2αm + α2a2) . (1.34)

If we substitute a = 0 in (1.34), then we get back the expression (1.20) for the entropy
of the non-rotating accelerating black holes. We see that as the acceleration parameter
vanishes, i.e., α → 0, the equation (1.34) reduces to the expression of gravitational
entropy for Kerr black holes derived in [109]. However for this axisymmetric metric, it
is not possible to evaluate the spatial metric using equation (1.5) because the object
is rotating, and so there is a nonzero contribution from the component of gtϕ, which
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Figure 1.4.: Plot showing the variation of the gravitational entropy density for the ac-

celerating non-rotating charged BH with respect to the radial coordinate r,

where m = 1, ks = 1, α = 0.25, e = 0.5, and θ = π

2 .

changes the spatial positions of events in course of time. Therefore the entropy density
is calculated by using the full four-dimensional metric determinant g in the expression
involving the covariant derivative [109], and we get

s = ks|∇.Ψ| = ks√
−g

(
∂

∂r

√
−gP

)
= 2ks

(2 cos3 θa2α + cos θαr2 + r)
(1 − αr cos θ)(r2 + a2cos2θ) , (1.35)

where g = − sin2 θ
(a2 cos2 θ + r2)2

(αr cos θ − 1)8 .

From equation (1.35) we see that the entropy density diverges at the ring singularity
and at r = 1

α cos θ
, which is the conformal infinity in this spherical type coordinate

system, as is evident from the metric (1.10). This can also be further verified from the
expressions of the Kretschmann scalar and the Weyl scalar in this case, since they vanish
at the conformal infinity but diverge at the ring singularity. To compute the zeroes of
the entropy density function we only need to find the roots of the numerator in (1.35),
which is a quadratic function in r.

Substituting α = 0 in the above expression of entropy density, we get the entropy
density for the Kerr black hole:

skerr = 2ksr

(r2 + a2 cos2 θ) . (1.36)

FIG. 1.5 clearly shows that the measure of entropy density is well behaved everywhere
except at the ring singularity. In figures FIG. 4.6(a) and FIG. 4.6(b), we have shown
that for different values of θ we can have a diverging or finite entropy density at r = 0.
When θ = π

2 , the expression of entropy density in (1.35) simply becomes 2ks

r
, which can

be seen clearly in FIG. 4.6(a) and it also diverges at the ring singularity at r = 0 for
this case. Whereas in FIG. 4.6(b), we can see that for θ = π

6 the entropy density is finite
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Figure 1.5.: Plot showing the variation of the gravitational entropy density for the accel-

erating rotating BH with respect to the radial coordinate r and the angular

coordinate θ, where α = 0.45, m = 1, a = 0.5,andks = 1. This figure clearly

indicates that at the ring singularity
(

r = 0, θ = π

2

)
the gravitational en-

tropy density diverges.

at r = 0 for nonzero values of acceleration parameter whereas for α = 0 the entropy
density becomes zero at the central singularity at r = 0. FIG. 4.7(a) shows us that
the entropy density simply behaves like inverse squared in r when θ = π

2 , for different
values of a, as it becomes independent of the rotation parameter and the acceleration
parameter, which can be easily seen from the expression (1.35). In FIG. 4.7(b), the
entropy density diverges for the condition r = 0, and a = 0, because it corresponds
to the central singularity of an accelerating non-rotating BH. These behaviors of the
entropy density are in conformity with our expectations and so we can say that this
definition of entropy density is quite suitable for these kinds of black holes.

In FIG. 1.8, the nature of the gravitational entropy density for accelerating rotating
black hole is studied for different values of θ, where we have fixed the values of the black
hole parameters as the following: m = 1, a = 0.25, α = 0.5, and ks = 1. The conformal
infinity lies at r = 1

α cos θ
. From (1.35) it is clear that as the value of θ goes from 0 to

π

2 , the conformal infinity shifts towards infinity, giving rise to the ∼ 1
r2 behavior which

diverges only at the ring singularity at r = 0, θ = π

2 . Moreover, we observe that except

for θ = π

2 , the gravitational entropy density remains finite at r = 0 for all other values
of θ.
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(a) (b)

Figure 1.6.: (a) Plot showing the variation of the gravitational entropy density for the

accelerating rotating BH with respect to the radial coordinate r and the

acceleration parameter α, where a = 0.5, m = 1, ks = 1, and θ = π

2 .

This figure clearly shows that at the ring singularity
(

r = 0, θ = π

2

)
the

gravitational entropy density diverges. (b) Plot showing the variation of the

gravitational entropy density for the accelerating rotating BH with respect

to the radial coordinate r and the acceleration parameter α, where a =

0.5, m = 1, ks = 1, and θ = π

6 . This figure shows that at r = 0 and θ = π

6 ,

the gravitational entropy density is finite.

1.4.4. Rotating charged accelerating black hole
For the rotating charged black hole, the Weyl scalar W is

W = 48 (αr cos (θ) − 1)6(
r2 + a2 (cos (θ))2

)6 ×

(
(
e2rα + am (aα + 1)

)
a2 cos3 θ +

(
2ae2r2α + 3a2m (aα − 1) r + a2e2

)
cos2 θ

+
(
−e2α r3 − 3am (aα + 1) r2 + 2ae2r

)
cos (θ) − r2

(
m (aα − 1) r + e2

)
)

(
(
e2rα + am (aα − 1)

)
a2 (cos (θ))3 +

(
−2ae2r2α − 3a2m (aα + 1) r + a2e2

)
(cos (θ))2

+
(
−e2αr3 − 3am (aα − 1) r2 − 2ae2r

)
cos (θ) + r2

(
m (aα + 1) r − e2

)
), (1.37)
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(a) (b)

Figure 1.7.: (a) Plot showing the variation of the gravitational entropy density for the

accelerating rotating BH with respect to the radial coordinate r and the

rotation parameter a, where α = 0.25, m = 1, ks = 1, and θ = π

2 . (b) Plot

showing the variation of the gravitational entropy density for the acceler-

ating rotating BH with respect to the radial coordinate r and the rotation

parameter a, where α = 0.25, m = 1, ks = 1, and θ = π

4 .

and the Kretschmann scalar K is

K = 48 (αr cos (θ) − 1)6(
r2 + a2 (cos (θ))2

)6 (a4
(
a4α2m2 + 2a2α2e2mr + 7/6α2e4r2 − a2m2

)
(cos (θ))6

+ 2
(
a2m + 5/6e2r

) (
e2 − 6mr

)
a4α (cos (θ))5 +

(
15a4m2r2 − 20a4α2e2mr3

− 15a6α2m2r2 − 17a2α2e4r4

3 − 10a4e2mr + 7/6a4e4
)

× (cos (θ))4 − 20
(

− e2mr2+(
−2a2m2 + 19e4

30

)
r + a2e2m

)
r2a2α (cos (θ))3 +

(
7/6α2e4r6 − 17a2e4r2

3 − 15a2m2r4

+ 10a2α2e2mr5 + 15a4α2m2r4 + 20a2e2mr3
)

(cos (θ))2 + 10
(
e2 − 6/5mr

)
r4α

(
a2m + 1/6e2r

)
cos (θ) +

(
−a2α2m2 + m2

)
r6 − 2e2mr5 + 7/6e4r4). (1.38)

From the above scalars we can calculate the ratio P =
√

W

K
, defined in [107], which

47



1. Gravitational entropy of accelerating black holes

Figure 1.8.: Plot showing the variation of the gravitational entropy density for the ac-

celerating rotating BH with respect to the radial coordinate r for different

values of θ, where we have taken m = 1 a = 0.25, α = 0.5, and ks = 1.

serves as the measure of gravitational entropy, Sgrav of black holes. The four-dimensional
determinant of the metric is

g = −
(sin (θ))2

(
r2 + a2 (cos (θ))2

)2

(α r cos (θ) − 1)8 . (1.39)

Here again the axisymmetric metric denies us the calculation of the spatial metric due to
the nonzero metric component gtϕ. Therefore as in the previous calculation for rotating
black holes, the entropy density is calculated by using the metric determinant g in the
covariant derivative. We thus have

s = ks|∇.Ψ| = ks√
−g

(
∂

∂r

√
−gP

)
. (1.40)

Here we have intentionally avoided writing the exact expression of entropy density as it
is lengthy and too much complicated, but we can easily check the validity of the result.
We have checked that if we substitute e = 0 in these calculations, then we get back the
result for the accelerating rotating black hole.

In FIG. 4.8 we find that the gravitational entropy density is not smooth, but con-
tains several singularities. The above analysis clearly shows that the measure of the
gravitational entropy used above is not adequate to explain the case of the accelerating
rotating charged black holes. Therefore we have to use the measure proposed in [109]
for the expression of P , which is

P = CabcdCabcd. (1.41)

Using the definition (1.41) of P , we have calculated the gravitational entropy density,
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(a) (b)

Figure 1.9.: (a) Plot showing the variation of the gravitational entropy density for the

accelerating rotating charged BH with respect to the radial coordinate r and

the rotation parameter a, where e = 0.6, α = 0.45, m = 1, ks = 1, andθ = π

2 .

(b) Plot showing the variation of the gravitational entropy density for the

accelerating rotating charged BH with respect to the radial coordinate r and

the rotation parameter a, for e = 0.6, α = 0.45, m = 1, ks = 1, and θ = π

4 .

which is given in equation (1.42):

s = ks

(a2 cos2(θ) + r2)7

(
96
(

a6α(a4α2m2 + 3a2α2e2mr + 2α2e4r2 − a2m2) cos9(θ)

+ (−20e2mr2 + (−18a2m2 + 2e4)r + a2e2m)α2a6 cos8(θ) − 34αa4(21/34e4r4α2+
57/34a2e2mr3α2 + (a4α2m2 − a2m2)r2 + 5/34a2e2mr − 3/17a4m2) cos7(θ)+
(90a4e2mr4α2 + (142a6α2m2 − 21a4α2e4)r3 − 9a6e2mα2r2 + (20a8α2m2 − 20a6m2)r
+ 5a6e2m) cos6(θ) + 30αa2(8/15e4r5α2 + 17/6a2e2mr4α2 + (3a4α2m2 − 3a2m2)r3

+ 1/6a2e2mr2 + (−19/5a4m2 + 11/30e4a2)r + a4e2m)r cos5(θ) + (−48a2e2mα2r6+
(−142a4α2m2 + 16a2α2e4)r5 − 5a4e2mr4α2 + (−90a6α2m2 + 90a4m2)r3 − 75a4e2mr2

+ 11a4e4r) cos4(θ) − 100(1/100e4r5α2 + 3/20a2e2mr4α2 + (17/50a4α2m2−
17/50a2m2)r3 − 9/100a2e2mr2 + (−17/10a4m2 + 13/50e4a2)r + a4e2m)αr3 cos3(θ)
+ (2e2mα2r8 + (18a2α2m2 − α2e4)r7 + 5a2e2mα2r6 + (48a4α2m2 − 48a2m2)r5

+ 75a2e2mr4 − 26e4a2r3) cos2(θ) + 30((1/30a2α2m2 − 1/30m2)r3 − 1/30e2mr2+

(−a2m2 + 1/10e4)r + a2e2m)αr5 cos(θ) + (−2a2α2m2 + 2m2)r7 − 5e2mr6 + 3e4r5
)

(rα cos(θ) − 1)5
)

. (1.42)
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In FIG. 1.10 we have shown the variation of the gravitational entropy density with
the radial distance and the acceleration parameter using this new definition (1.41) of
the scalar P . The entropy density function is now well-behaved and all the singularities
vanish, except the ring singularity, on account of the introduction of this new definition.
In FIG. 1.10(a), the entropy density function diverges at r = 0 and θ = π

2 , as it en-
counters the ring singularity, whereas in FIG. 1.10(b) the entropy density stays finite at
r = 0 and θ = π

4 . Although the entropy density function (1.42) vanishes at the confor-
mal infinity r = 1

α cos(θ) , we cannot simply associate the zeroes of the entropy density
function with the horizons, because according to this modified definition, the expression
(1.42) does not have such factors, and so we have to solve the function explicitly in order
to determine the zeroes of the entropy density.

(a) (b)

Figure 1.10.: (a) Plot showing the variation of the gravitational entropy density for

the accelerating rotating charged BH with respect to the radial coordi-

nate r and the acceleration parameter α, for e = 0.25, a = 0.5, m =

1, ks = 1, and θ = π

2 . (b) Plot showing the variation of the gravita-

tional entropy density for the accelerating rotating charged BH with re-

spect to the radial coordinate r and the acceleration parameter α, where

e = 0.25, a = 0.5, m = 1, ks = 1, and θ = π

4 .
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1.5. Discussions
We now discuss the possibility of having an angular component in the vector field Ψ for
axisymmetric spacetimes as proposed in [109]. Using this modified definition of Ψ, and
the modified expression (1.41), we now calculate the gravitational entropy density for
axisymmetric space-times, using the following expression:

s = ks|∇.Ψ| = ks√
−g

∣∣∣∣∣
(

∂

∂r
(
√

−gP ) + ∂

∂θ
(
√

−gP )
)∣∣∣∣∣ . (1.43)

(a) (b)

Figure 1.11.: (a) Plot showing the variation of the gravitational entropy density for the

accelerating rotating BH with respect to the radial coordinate r and the

angular coordinate θ, using the modified expression given in 1.44, where

α = 0.25, e = 0, a = 0.95, m = 1, andks = 1. (b) Plot showing the variation

of the gravitational entropy density for the accelerating rotating charged

BH with respect to the radial coordinate r and the angular coordinate θ,

using the modified expression given in 1.45, where α = 0.25, e = 0.2, a =

0.45, m = 1, and ks = 1.

The gravitational entropy density for the uncharged rotating accelerating black hole
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is given by

s = ks√
sin2(θ)(a2 cos2(θ) + r2)2

(rα cos(θ) − 1)8(∣∣∣∣∣ 48√
sin2(θ)(a2 cos2(θ) + r2)2

(rα cos(θ) − 1)8 (a2 cos2(θ) + r2)5(rα cos(θ) − 1)3

(
sin(θ)

(
((2a10α3m2r − 2a8αm2r) cos8(θ) − 4(a4m2α2 + (9α2r2 − 1)m2a2)a6 cos7(θ)

− 10(m2(34
5 r3α2 − 6r)a4 − 34

5 r3a2m2)αa4 cos6(θ) + 96a4(a4m2r2α2 + (71
24α2r4 − r2)

m2a2) cos5(θ) + 150((6
5r3α2 − 34

15r)m2a4 − 6
5r3a2m2)αa2r2 cos4(θ) − 180a2(a4m2r2α2

+ (71
45α2r4 − r2)m2a2)r2 cos3(θ) − 150α((34

75r3α2 − 38
25r)m2a4 − 34

75r3a2m2)r4 cos2(θ)

+ 40(a4m2r2α2 + ( 9
10α2r4 − r2)m2a2)r4 cos(θ) + 10α((1

5r3α2 − 6
5r)ma2 − 1

5r3m)mr6)

sin2(θ) + (2αa6(a4α2m2 − a2m2) cos9(θ) − 36 cos8(θ)a8α2m2r − 68αa4(m2(α2r2 − 3
17)

a4 − a2m2r2) cos7(θ) + 40a4(a4m2rα2 − 9
20(−142

9 r3α2 + 20
9 r)m2a2) cos6(θ) + 60αa2

((3r3α2 − 19
5 r)m2a4 − 3r3a2m2)r cos5(θ) − 180a2(a4m2r2α2 + (71

45α2r4 − r2)m2a2)

r cos4(θ) − 200((17
50r3α2 − 17

10r)m2a4 − 17
50r3a2m2)αr3 cos3(θ) + 96r3(a4m2r2α2+

(3
8α2r4 − r2)m2a2) cos2(θ) + 60(( 1

30r3α2 − r)m2a2 − 1
30r3m2)αr5 cos(θ) − 4a2α2m2r7

+ 4m2r7) sin(θ) + (a2 cos2(θ) + r2)(a2(a2αm − am) cos3(θ) + (−3a3αmr − 3a2mr)

cos2(θ) + (−3a2αmr2 + 3amr2) cos(θ) + r2(aαmr + mr))(rα cos(θ) − 1)(a2(a2αm

+ am) cos3(θ) + (3a3αmr − 3a2mr) cos2(θ) + (−3a2αmr2 − 3amr2) cos(θ)

− r3amα + r3m) cos(θ)
))∣∣∣∣∣

)
(1.44)

In FIG. 1.11(a), we indicate the variation of the gravitational entropy density with
radial distance and the angular coordinate, using the modified expression in (1.44).

Similarly the gravitational entropy density for the charged rotating accelerating black
hole is given by equation (1.45), which is quoted below. We can always check that if
we substitute e = 0 in (1.45), we get back the expression in (1.44). In FIG. 1.11(b), we
have shown the corresponding variation of the gravitational entropy density with radial
distance and angular coordinate. The expressions of gravitational entropy density in
both (1.44) and (1.45) diverges at the ring singularity i.e. at (r2 + a2 cos2(θ)) = 0 and
vanishes at the conformal infinity i.e. at r = 1

α cos(θ) .
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s = ks√
sin2(θ)(a2 cos2(θ) + r2)2

(rα cos(θ) − 1)8(∣∣∣∣∣ 48√
sin2(θ)(a2 cos2(θ) + r2)2

(rα cos(θ) − 1)8 (a2 cos2(θ) + r2)5(rα cos(θ) − 1)3

(
sin(θ)

(
((2a10m2rα3 + (4α3e2mr2 − 2αm2r)a8 + 2a6e4r3α3) cos8(θ) − 4(a4m2α2+

((9α2r2 − 1)m2 + 1/2e2mrα2)a2 − 1/2e2r2α2(e2 − 15mr))a6 cos7(θ) − 10(m((34/5r3α2−

6r)m + e2)a4 + 3/5(−34/3m2r2 + 16e2r(α2r2 − 5/48)m + e4)ra2 + 16/5e4r5α2)αa4 cos6(θ)

+ 96a4(a4m2r2α2 + ((71/24α2r4 − r2)m2 + 3/16e2(α2r2 + 10/3)rm − 1/16e4)a2 − 1/3e2α2(e2

− 85/16mr)r4) cos5(θ) + 150(((6/5r3α2 − 34/15r)m + e2)ma4 + 26/75(−45/13m2r2 + 45/13(α2r2−
1
18)e2rm + e4)ra2 + 7

25e4r5α2)αa2r2 cos4(θ) − 180a2(a4m2r2α2 + ((71
45α2r4 − r2)m2

− 1
18e2r(α2r2 − 20)m − 13

45e4)a2 − 7
30e2α2r4(e2 − 19

7 mr))r2 cos3(θ) − 150α(((34
75r3α2

− 38
25r)m + e2)ma4 + 11

75r(−34
11m2r2 + 20

11e2(α2r2 + 9
20)rm + e4)a2 + 2

75e4r5α2)r4

cos2(θ) + 40(a4m2r2α2 + (( 9
10α2r4 − r2)m2 − 1

4e2r(α2r2 − 6)m − 11
20e4)a2 − 1

10(e2

− 3
2mr)e2α2r4)r4 cos(θ) + 10α(((1

5r3α2 − 6
5r)m + e2)a2 + 1

5r2(e2 − mr))mr6) sin2(θ)

+ (2αa6(a4m2α2 + (3α2e2mr − m2)a2 + 2α2e4r2) cos9(θ) + 2α2a6((e2m − 18m2r)a2

+ 2re4 − 20e2mr2) cos8(θ) − 68αa4(m2(α2r2 − 3
17)a4 + (−m2r2 + 57

34e2r(α2r2 + 5
57)

m)a2 + 21
34e4r4α2) cos7(θ) + 40a4(a4m2rα2 − 9

20((−142
9 r3α2 + 20

9 r)m + e2(α2r2 − 5
9))

ma2 − 21
20e2α2(e2 − 30

7 mr)r3) cos6(θ) + 60αa2(((3r3α2 − 19
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1. Gravitational entropy of accelerating black holes

Therefore from FIG. 1.11, we find that the entropy density measure diverges not only
at the ring singularity but also at θ = π, which renders this measure inappropriate
for determining the gravitational entropy in these cases. There is another singularity
at θ = 0, though not visible in FIG. 1.11, but can be inferred from the mathematical
analysis. This is in agreement with the observations in [109] for non-accelerating ax-
isymmetric black holes. This is a disturbing feature of this method of analysis. For a
possible resolution of this problem we want to point out that in the case of rotating
black holes, the existence of stationary observer is not well defined because of the effect
of frame dragging. Nevertheless, we have worked with the chosen definition of gravi-
tational entropy density to get an overall idea of the way things work out. For such
cases of axisymmetric space-times, it is not possible to determine the spatial metric hij

because of the presence of the metric coefficient gtϕ in the metric (1.11) and in metric
(1.10). This is because the object is rotating and the spatial position of each event in
the space-time depends on time. Therefore the covariant divergence is calculated from
the determinant of the full metric and is given in equations (1.35) and (1.40).

1.6. Conclusions
In this paper we have adopted a phenomenological approach of determining the gravi-
tational entropy of accelerating black holes as done in [107] and [109]. We find that the
gravitational entropy proposal [107] for the accelerating black holes and charged accel-
erating black holes works pretty well, except for the rotating charged metric where we
faced difficulties in this regard. We then considered the alternative definition of P given
in [109] to compute the entropy density and showed that the gravitational entropy is well
defined in this case. In the end we considered the vector Ψ to have additional angular
components for axisymmetric spacetimes, as proposed in [109], to compute the entropy
density for accelerating rotating and accelerating charged rotating black holes. From our
calculations and the corresponding plots, we can conclude that for the rotating black
holes the entropy density will be well-defined if we change our definition of the vector
field Ψ, be it in the magnitude (P ) of it, or in the vector directions (having additional
angular components). ”
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cosmological models
The contents of this chapter have been published in a journal, details of which are given
below:

JOURNAL REFERENCE: International Journal of Modern Physics D, Vol. 30,
No. 7 (2021) 2150051 (28 pages)

ARTICLE NAME: An investigation on gravitational entropy of cosmological mod-
els
DOI: 10.1142/S0218271821500516

The paper is quoted below:

“

2.1. Introduction
The proposal of gravitational entropy attempts to provide a sense of sequence to gravi-
tational processes, and remains as one of the open problems in General Relativity (GR)
till today. Although a suitable definition of gravitational entropy in the case of station-
ary black holes was available in literature for quite some time [44], but a universally
agreeable analogue in the case of cosmology has been under the process of formulation
till late.

It is well-known that GR is plagued by the problem of spacetime singularities. How-
ever, Roger Penrose [45] put forward his belief that this problem was a consequence
of the limitations of the “very notion of spacetime geometry” and the corresponding
physical laws. According to him, the problem of spacetime singularities held the key to
the “origin of the arrow of time”. Several researchers [46, 27] based their studies on the
notion of this arrow of time.

Originally Penrose proposed the Weyl curvature hypothesis (WCH), which merely re-
quired that the Weyl tensor should be zero at the big bang singularity [47], and the
subsequent evolution of the universe must be close to the homogeneous and isotropic
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2. Gravitational entropy of cosmological models

Friedman-Lemaitre-Robertson-Walker (FLRW) model. Assuming the existence of “grav-
itational entropy”, Penrose argued that the principle of increase of entropy implies that
the big bang singularity should be of low entropy, which is related to the “absence of
clumping of matter”, and hence to the absence of Weyl tensor, so that the big bang
singularity must have been a regular one. Thus the universe could evolve to its observed
FLRW form and be consistent with the second law of thermodynamics [27, 48]. If mat-
ter was approximately under thermodynamic equilibrium during the big bang, then it
requires a corresponding low entropy of the gravitational field. Although the big bang
would normally be considered as a state of maximum entropy (assuming thermal equi-
librium), but in reality the entropy of the universe is increasing. This apparent paradox
may be due to the omission of gravitational degrees of freedom, and the gravitational
entropy of the big bang was actually low. Penrose [45] argued that gravitational entropy
must be defined from the free gravitational field. An increase in gravitational entropy
would imply an increase in the local anisotropy (thereby facilitating structure forma-
tion), which can be quantified by the shear tensor. By analyzing the trace free Bianchi
identities we can also suggest that this shear tensor affects the evolution of the Weyl
tensor [49], thereby establishing a physical relationship between gravitational entropy
and the Weyl tensor. Although a conformally flat perfect fluid spacetime has vanishing
shear and vorticity, and the metric is of FLRW type [50], but conformally flat spacetimes
with diagonal trace-free anisotropic pressure and zero cosmological constant is found to
possess a simple equation of state where the energy per particle density depends only on
the shear scalar [51]. This provides us with one more reason to connect local anisotropy
i.e. gravitational entropy to the Weyl tensor.

Penrose proposed that the gravitational entropy should be related to a suitable mea-
sure of the Weyl curvature, and the condition of low entropy should enforce constraints
on the Weyl curvature. All these implied that some suitable dimensionless scalar must be
asymptotically zero. Therefore, the determination of the gravitational entropy function
requires the construction of this scalar function.

In 1982, Goode and Wainwright [52] presented a new formulation of the two classes
of Szekeres solutions of the Einstein field equations, and provided a general analysis
of the scalar polynomial curvature singularities of these solutions, and of their time-
evolution. They identified the solutions which are close to an FLRW model near the
initial singularity, or in the later stages of evolution.

Wainwright and Anderson discussed the evolution of a class of exact spatially homo-
geneous cosmological models of Bianchi type V Ih [53]. It is known that solutions of type
V Ih cannot approach isotropy asymptotically at large times. They infact become asymp-
totic to an anisotropic vacuum plane wave solution. Nevertheless, for these solutions the
initial anisotropy decays and leads to a stage of finite duration in which the model is close
to isotropy. Depending on the choice of parameters in the solution, this quasi-isotropic
stage can commence at the initial singularity, in which case the singularity is of the type
known as “isotropic” or “Friedmann-like”. The existence of this quasi-isotropic stage
implies that these models can be compatible in principle with the observed universe.
Inspired by the WCH, Goode and Wainwright [54] gave the geometric definition of the
concept of ‘isotropic singularity’ and showed that the Weyl tensor is dominated by the
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2. Gravitational entropy of cosmological models

Ricci tensor at this scalar polynomial curvature singularity. Husain [55] examined the
WCH in the context of the Gowdy cosmology. He calculated the expectation values of
the square of the Weyl curvature in states of clumped and unclumped gravitons and
found that the curvature contains information about the gravitational entropy.

Senovilla [56] showed that the Bel-Robinson tensor is quite suitable for providing a
measure of the energy of gravitational fields. Following his work, there were several
attempts to define the gravitational entropy on the basis of the Bel-Robinson tensor on
one hand, and also in terms of the Riemann tensor and its covariant derivatives [27, 48].
Lake and Pelavas [27] introduced a class of “gravitational epoch” functions which were
dimensionless scalars, one of which was built from the Riemann tensor and its covariant
derivatives only, denoted by P . Other alternative functions involving the Bel-Robinson
tensor were also suggested by them. They analyzed whether such functions could be
regarded as gravitational entropy function or not. Other dimensionless scalars have also
been considered, for example by [57], which are constructed from the Riemann tensor
and its covariant derivatives.

In spite of all these efforts, there was still doubt regarding the definition of gravitational
entropy in a way analogous to the thermodynamic entropy, which would be applicable to
all gravitational systems. Attempts were also made to explain the gravitational entropy
of black holes. Among them one interesting approach is to handle the problem from
a phenomenological point of view as proposed in [107] and expanded in [109], for the
purpose of testing the WCH against the expressions for the entropy of cosmological
models and black holes. They considered a measure of gravitational entropy in terms
of a scalar derived from the contraction of the Weyl tensor and the Riemann tensor,
and matched it with the Bekenstein-Hawking entropy [169, 39]. Recently, Guha and
Chakraborty [61] investigated whether the prescriptions for calculating gravitational
entropy as proposed in [107] and [109] could be applied to the case of the accelerating
black holes. They found that such a definition of gravitational entropy works pretty
well for the accelerating black holes and charged accelerating black holes, except for the
rotating charged accelerating metric.

An important proposal was offered by Clifton et al. [106], who provided a measure
of gravitational entropy based on the square root of the Bel–Robinson tensor which was
motivated by thermodynamic considerations, and has a natural interpretation as the
effective super-energy-momentum tensor of free gravitational fields. They applied this
construction to several cases, including cosmological ones, and found that the specific
form of this measure depended on the nature of the gravitational field, namely, whether
it was Coulomb-like or wave-like. However, this definition of gravitational entropy is
only valid for General Relativity, where the Bel-Robinson tensor can be defined in this
way. In the subsequent text, we refer to this formulation as the “CET proposal”.

Bolejko [63] showed that both the notion of gravitational entropy of the universe
(associated with inhomogeneity) and the cosmic no-hair conjecture (that a universe
dominated by dark energy should asymptotically approach a homogeneous and isotropic
de Sitter state) are simultaneously valid and are not contradictory. It was found that a
universe with a positive cosmological constant and nonpositive spatial curvature in fact
approaces the de Sitter state, but at the same time keeps generating the gravitational
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2. Gravitational entropy of cosmological models

entropy.
In the paper [106], the authors considered scalar perturbations of a FLRW geometry.

They found that the gravitational entropy function behaved like the Hubble weighted
anisotropy of the gravitational field, which therefore increases with structure formation.
On the other hand, the FLRW metric is conformally flat [64], and so the Bel–Robinson
tensor has vanishing components. The gravitational epoch function W generated by the
Bel–Robinson tensor, is also vanishing, resulting in a vanishing gravitational entropy.
In fact, gravitational entropy is identified with the presence of inhomogeneity, which
requires both anisotropy and a non-zero W .

The intermediate homogenization of inhomogeneous cosmological models was studied
in [65] along with the problem of gravitational entropy. All definitions of entropy exam-
ined in this paper yielded decreasing gravitational entropy during the homogenization
process, which implies that the gravitational entropy may actually decrease in some
cases.

Grøn and Hervik [66] investigated the evolution of different measures of ‘gravitational
entropy’ in Bianchi type I and Lemaître–Tolman–Bondi (LTB) universe models. They
found that the WCH remains secure if one considers the non-local version of the con-
jecture. In their paper, Mishra and Singh [67] investigated whether the inhomogeneous
cosmological models could be motivated on the basis of thermodynamic grounds and a
particular minimal void LTB inhomogeneous model was chosen for the analysis. They
examined several definitions of gravitational entropy and found that the Weyl curva-
ture entropy exhibits satisfactory thermodynamic behavior in the case of inhomogenous
cosmologies.

Sussman [68] introduced a weighed scalar average formalism (the ‘q-average’ formal-
ism) for the study of the theoretical properties and the dynamics of spherically symmetric
LTB dust models and explored the application of this formalism to a definition of a gravi-
tational entropy functional proposed by Hosoya et al (HB proposal) [111]. Subsequently,
Sussman and Larena [70] considered the generic LTB dust models to probe the CET
proposal and the HB proposal, along with a variant of the HB proposal, suggesting that
the notion of gravitational entropy is a theoretically robust concept which can also be
applied to other general spacetimes.

The evolution of the CET gravitational entropy was also studied by the same authors
in [71] for the local expanding cosmic CDM voids using a non-perturbative approach.
Marozzi et al [72] calculated the gravitational entropy of the large scale structures of
the universe in the linear regime, where it can be described by the perturbed FLRW
spacetime. This entropy arises from the averaging made over an extended region and
explains the formation of large-scale structure in the Universe. The results obtained in
[71] for the gravitational entropy agreed well with their results, when the LTB evolution
is in its linear regime, thus providing us with a connection between the local physics and
the large scale linear regime.

In [73] it was pointed out that the formation of numerous astronomical objects like
the supermassive black holes (quasars), super-novae and dust, and the occurrence of
several phenomenona like gamma ray bursts in the early universe are contradictory to
the conventional mechanisms of its possible origin. The ΛCDM cosmology fails to explain

58



2. Gravitational entropy of cosmological models

several observations like the absence of central cusps with ρ ∼ r−1 in the dark matter
distribution [74], presence of too many bright satellite galaxies at high z [75, 76, 77],
or the larger value of observed angular momentum of galaxies. Although the standard
cosmological model successfully describes the gross properties of the universe, yet fails
in terms of several smaller details, both in the early universe at redshifts z ∼ 10 and
in the present time. The early universe is abundantly populated by quasars ([78] and
references therein), but it is practically impossible to create so many quasars in the young
universe assuming the standard mechanism of BH formation by the process of matter
accretion. These discrepancies may be removed if there exists a dark matter particle
having life-time greater than the age of the universe at the time of recombination [79].
Such observations suggest the existence of New physics beyond the standard theory,
which therefore requires suitable modification (see also the references in [73]).

A possible solution may lie in a different cosmological expansion law as indicated in
[80] and [81]. The supersymmetric Grand Unified models [73, 82] consider the action
of a scalar field, χ, with non-zero baryonic number, B, due to which bubbles may be
generated. Initially (after inflation) χ was away from the origin and when inflation is
over it starts to evolve down to the equilibrium point, χ = 0. Because of the inflationary
expansion, the bubbles could become astrophysically large. Immediately after the for-
mation of bubbles with large value of χ, inhomogeneities developed in the energy density
due to different equations of state in the regions inside and outside these bubbles. The
big bang nucleosynthesis (BBN) inside or in the vicinity of the high-B bubbles creates
heavy elements more efficiently than that predicted in the standard model. This may
lead to the observed distribution of the celestial bodies and a lot of dust at z ∼ 10 [73].
Also recently astronomers have shown a very strong possibility of an anisotropic universe
unlike the standard assumption of a homogeneous and isotropic universe [83, 84].

These informations provide a very strong motivation for us to explore the inhomo-
geneous and anisotropic cosmologies. Such models have also been studied recently [85]
for the resolution of the discrepancy between the Hubble parameter measured locally as
opposed to its value derived from the cosmic microwave background radiation (CMB).

In this paper we have examined the validity of the CET definition of gravitational
entropy in the context of some exact cosmological solutions of the Einstein’s field equa-
tions. In the next section we will first discuss the formalism of calculating gravitational
energy density and temperature, which then provides us with the formalism of defining
the gravitational entropy of a physical system. We begin Section III by describing the
covariant 1 + 3 splitting of spacetime, which we have used to analyse the behaviour of
some cosmological models with regard to the Weyl curvature. We have calculated all the
relevant functions like the normalized epoch function, gravitational energy density, grav-
itational temperature and the gravitational entropy for these models. The discussions
and conclusions are presented in Section IV.
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2.2. Gravitational Entropy
In the following proposals, the measure of gravitational entropy is based on the Bel-
Robinson tensor, which is defined in terms of the Weyl tensor in the form [86, 88]

Tabcd ≡ 1
4
(
CeabfCe f

cd + C∗
eabfC∗ e f

cd

)
, (2.1)

where C∗
abcd = 1

2ηabefCef
cd is the dual of the Weyl tensor.

The important property of this tensor is that it is overall symmetric, tracefree, and is
covariantly conserved in vacuum or in presence of the cosmological constant. The factor
of 1/4 gives a natural interpretation of the Bel-Robinson tensor in terms of the Weyl
spinor [90]. A measure of gravitational entropy was constructed by Pelavas and Lake
[27] and Pelavas and Coley [48], which had the form

S =
∫

Wdτ, (2.2)

where the epoch function W was defined using the Bel-Robinson tensor Tabcd and the ob-
server four velocity. The epoch function so constructed was therefore observer dependent
and non-negative.

Exploring the correspondence between electromagnetism and general relativity, Maartens
and Basset [49] considered a 1 + 3 covariant, nonperturbative approach, where the free
gravitational field was covariantly characterized by the Weyl gravito-electric and gravito-
magnetic spatial tensor fields. They demonstrated the covariant analogy between the
tensor Bianchi equations and the vector Maxwell equations, and presented the important
result that the Bel-Robinson (BR) tensor is a “unique Maxwellian tensor” which could
be constructed from the Weyl tensor, which behaves as the “super energy-momentum”
tensor for the gravitational fields. The only problem was that the dimension of the BR
tensor is L−4 and not L−2 (where L is the unit of length), which is the expected dimension
for the energy momentum tensor. Based on this work, Clifton, Ellis and Tavakol [106]
proposed that the symmetric 2-index square root tab, of the BR tensor should act as the
effective energy momentum tensor for free gravitational field. Subsequently Goswami
and Ellis [91] constructed a tensor describing the interaction between free gravity and
matter, which is taken to be the symmetric two index square root of the BR tensor.
Since we intend to examine the CET proposal of gravitational entropy as applied to a
few interesting cosmological models, so we will now present a brief review of the CET
proposal.

2.2.1. The CET proposal
In the CET proposal of gravitational entropy [106], rather than constructing the entropy
measure as an integral along a timelike curve, they employed integrals over spacelike
hypersurfaces. In section 2 of their paper they laid down a list of requirements for a
viable measure of gravitational entropy, Sgrav. They used the gravito-electromagnetic
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properties of the Weyl tensor and the 1+3 decomposition of the equations, to express
the epoch function as follows:

W = Tabcduaubucud = 1
4
(
Eb

aEa
b + Hb

aHa
b

)
. (2.3)

Here W is the “Super energy density” and Eab, Hab are the electric and magnetic
parts of the Weyl tensor respectively. The inhomogeneous distribution would require
that either Eab or Hab is non-zero, so that W > 0, which means that inhomogeneity
requires both anisotropy and a non-zero W .

From this symmetric and tracefree four-index tensor Tabcd, one can define a symmetric
two-index “square-root”, tab, which is a solution of the equation

Tabcd = t(abtcd) − 1
2te(at e

b gcd) − 1
4t e

e t(abgcd) + 1
24

(
tef tef + 1

2(t e
e )2

)
g(abgcd). (2.4)

The right hand side of this equation constitutes the only totally symmetric and tracefree
four index tensor, the quadratic tab, that may be constructed. For any solution, tab, there
exists another solution ϵtab + fgab, where ϵ = ±1, and f is an arbitrary function. In
spacetimes of Petrov type D or N, although the solution to the above equation is unique
for a tracefree tab, but that does not necessarily lead to a quantity that is conserved in
vacuum. Therefore the square-root of the Bel-Robinson may be chosen to inherit its
tracefree property, or for its conservation in vacuum, but not necessarily both at the
same time. For Petrov type D spacetimes, with two double principal null directions, and
a Coulomb-like gravitational field, the tracefree square-root can be written in the form

tab = 3ϵ|Ψ2|(m(am̄b) + l(akb)), (2.5)

where Ψ2 = Cabcdkambm̄cld is the only non-zero Weyl scalar. The complex null tetrad is
defined as

ma = 1√
2

(xa − iya) , la = 1√
2

(ua − za) , and ka = 1√
2

(ua + za) , (2.6)

where xa, ya and za are spacelike unit vectors, which form an orthonormal basis together
with ua, gab = 2m(am̄b) − 2k(alb), with la and ka being aligned with the principal null
directions. The effective energy-momentum, τab, of the Coulomb-like gravitational fields
present in a Petrov type D spacetime, was assumed to be given by the solution to (2.4),
with a traceless part described by (2.5), so that

8πτab = α[3ϵ|Ψ2|(m(am̄b) + l(akb)) + fgab]

= α
[(3

2ϵ|Ψ2| + f
)

(xaxb + yayb) −
(3

2ϵ|Ψ2| − f
) (

zazb − uaub
)]

. (2.7)

Here α is an unknown constant which must be determined. By contracting this effective
energy-momentum tensor with the timelike unit vector, ua, and the projection tensor,
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hab, one obtains the effective energy density, pressure and momentum density, which are
given below:

8πρgrav = α
(3

2ϵ|Ψ2| − f
)

, 8πpgrav = α
(1

2ϵ|Ψ2| + f
)

,

8ππgrav
ab = α

2 ϵ|Ψ2|
(
xaxb + yayb − zazb + uaub

)
, (2.8)

and qgrav
a = 0. These quantities seem to obey the equations that are closely analogous to

those of matter fields, and therefore these equations were used to construct a definition
of gravitational entropy. The free function f can be removed by imposing the energy
conservation condition in vacuum for the effective energy momentum tensor, and simul-
taneously (2.4) is to be imposed to get the functional form of f . To do so, equation (2.7)
is to be differentiated, and at the same time one has to use the relation

|Ψ2| =
√

2W

3 , (2.9)

and equation (45) of [49], which represents the covariant non-perturbative generalization
of Bel’s linearized conservation equation in [86]. Finally one can derive the functional
form of f as follows:

f = −1
2ϵ|Ψ2| + λ1, (2.10)

where λ1 is an arbitrary constant which may be set to zero, as it does not affect the rel-
evant thermodynamic quantities. Consequently the effective energy-momentum tensor
is obtained in the form

8πτab = ϵα

√
2W

3 (xaxb + yayb) − 2ϵα

√
2W

3
(
zazb − uaub

)
, (2.11)

and the effective energy density and the pressure in the free gravitational field are ob-
tained as

8πρgrav = 2α

√
2W

3 , and pgrav = 0, (2.12)

where ϵ = +1, so that ρgrav ≥ 0. The anisotropic pressure and momentum density remain
unaffected according to equation (2.8) and the relation qgrav

a = 0, because the function
f occurs only in the trace of τab. These relations constitute the “unique expressions”
for the effective energy density and pressure of free gravitational field in Petrov type D
spacetimes [106], which are determined from the square-root of the Bel-Robinson tensor
Tabcd by imposing the condition of energy conservation in vacuum, i.e., uaτab

;b = 0, and
the positivity of energy density. Finally the relation (2.9) implies that many properties
of the Bel-Robinson tensor are inherited by the effective energy-momentum tensor τab.
In order to calculate the entropy according to thermodynamic prescriptions, one must
know the “temperature”, Tgrav, of the free gravitational fields. For that purpose, one
must have possess some knowledge about the underlying microscopic theory. Naturally,
the CET proposal assumed that a thermodynamic treatment of the free gravitational
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field is very much similar to that of standard thermodynamics. This was the motivation
for looking into the results of black hole thermodynamics, and quantum field theory in
curved spacetimes. Therefore they required the definition of temperature to be local
(instead of being defined for horizons only), which reproduced the expected results from
semi-classical calculations in Schwarzschild and de Sitter spacetimes. The temperature
at any point in spacetime was given by the following expression:

Tgrav = |ua;bl
akb|

π
= |u̇aza + H + σabz

azb|
2π

, (2.13)

where za is a spacelike unit vector aligned with the Weyl principal tetrad, and H = Θ
3

is the isotropic Hubble rate.

2.3. Gravitational entropy of some cosmological models
From earlier studies [106] it is known that the CET proposal of gravitational entropy is
applicable only to Petrov type D spacetimes in four dimensional GR. Therefore, in the
following sequel we will explore some Petrov type D spacetimes representing the various
phases of evolution of the universe filled with ideal irrotational fluids.

We will use the covariant 1 + 3 splitting of spacetime [92, 93, 94] with the timelike
vector field ua and the projection tensor hab satisfying the following relations

Ua
b := uaub, gab := −uaub + hab, (2.14)

Ua
cU

c
b = Ua

b, Ua
bu

b = ua, Ua
a = −1, (2.15)

ha
ch

c
b = ha

b, ha
bu

b = 0, ha
a = 3. (2.16)

The covariant time derivative (represented by a dot) and the projected spatial derivative
(represented by D) using the projection tensor hab are given by:

Ȧa...
b... = uc ▽c Aa...

b... , DaAb...
c... ≡ hp

ahb
q...h

r
c▽pAq...

r..., (2.17)

U̇<ab> = ḣ<ab> = 0, DaUbc = Dahbc = 0 . (2.18)
Here the angular brackets ‘<>’ denote the symmetric and trace-free part of a tensor.
The 3−volume element is defined as:

ϵ := −ϵdefghd
ahe

bh
f

cu
g = ugϵgdefhd

ahe
bh

f
c . (2.19)

The kinematical variables are obtained from the covariant derivative of u, which is
given by

∇aub = −uau̇b + Daub := −uau̇b + 1
3Θhab + σab + ϵabcω

c, (2.20)
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where the kinematical variables are defined by

u̇a := ub∇bu
a, Θ := Daua, σab := D<aub>, ωa := ϵabcDbuc . (2.21)

The matter variables are defined as the following:

µ := Tabu
aub, qa := −Tcbh

caub, p := 1
3Tabh

ab, πab := Tcdhc
<ahd

b> . (2.22)

The electric and magnetic parts of the Weyl curvature tensor are given by

Eab := Ccdefhc
audhe

bu
f , Hab := (−1

2ϵcdghCgh
ef )hc

audhe
bu

f . (2.23)

In order to drive in to the point that the gravitational entropy measured in terms
of the Weyl tensor indeed fulfills the physical requirement that it reflects the inherent
anisotropy of the spacetime, we will take into consideration two equations.

One of the Ricci identities is given by [92]:

σ̇<ab> − D<au̇b> = −2
3Θσab + u̇<au̇b> − σ<a

c σb>c − ω<aωb> −
(

Eab − 1
2πab

)
, (2.24)

and also one of the contracted Bianchi identities [92] is(
Ė<ab> + 1

2 π̇<ab>
)

− ϵcd<aDcH
b>

d + 1
2D<aqb> = −1

2(µ + p)σab − Θ
(

Eab + 1
6πab

)
+3σ<a

c

(
Eb>c − 1

6πb>c
)

− u̇<aqb>

+ϵcd<a
[
2u̇cH

b>
d + ωc

(
Eb>

d + 1
2πb>

d

)]
(2.25)

A very important point is to be noted in this context, i.e., equations (2.24) and (2.25)
together define a two way relationship between the shear and the electric part of Weyl
tensor. The electric Weyl drives the evolution of shear and matter density, together with
the shear which drives the evolution of the electric Weyl. From these two equations we
can clearly identify the physical processes behind the generation of gravitational entropy,
i.e. it is indeed generated from the anisotropies of the universe.

2.3.1. FLRW model
Let us begin with the most common and universally accepted cosmological model, the
FLRW metric. Since it represents a homogeneous and isotropic universe, the gravita-
tional entropy function is expected to vanish in this case. However, that does not violate
the WCH, since gravitational entropy is associated with inhomogeneity.

Here we are only considering the zero spatial curvature case (k = 0) but the results are
valid for any of the three cases: k = 0, ±1. The generality of the property of conformal
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flatness for any spatial curvature in FLRW models has been shown explicitly in [95].
The flat FLRW metric is given by

ds2 = −dt2 + A2(t)(dx2 + dy2 + dz2), (2.26)

where A(t) is the scale factor. This is a conformally flat algebraically special metric, i.e.,
the Weyl curvature is zero in this case, thereby making it a Petrov type O spacetime,
which is a subclass of the algebraically more general Petrov type D spacetime. Conse-
quently all the Weyl curvature components are zero: Ψ0 = .. = Ψ4 = 0. For the sake
of completeness let us consider the following four vectors in conformity with the Weyl
principal tetrad:

ua = (1, 0, 0, 0) , (2.27)

za =
(

0,
1
A

, 0, 0
)

, (2.28)

where ua and za forms the null cone, and the (m, m̄) plane is covered by following two
four vectors:

xa =
(

0, 0,
1
A

, 0
)

, (2.29)

ya =
(

0, 0, 0,
1
A

)
. (2.30)

Using our chosen ua, we can determine the expansion scalar Θ along with other quantities
like the acceleration, shear tensor and rotation tensor. The expression for the expansion
is obvious and matches with the isotropic three dimensional volume expansion:

Θ = 3Ȧ

A
. (2.31)

Subsequently all the components of the shear tensor, σab, are zero along with vanishing
acceleration, and rotation tensor. We thus obtain

ρgrav = α

4π
|Ψ2| = 0, (2.32)

Tgrav =
∣∣∣∣∣ u̇aza + H + σabz

azb

2π

∣∣∣∣∣ = 1
2π

∣∣∣∣∣ȦA
∣∣∣∣∣ , (2.33)

and
Sgrav =

∫
V

ρgravv

Tgrav

= 0, (2.34)

which should be obvious because the metric is conformally flat, and the measure of free
gravitational energy density depends on the Bel–Robinson tensor which is constructed
out of the Weyl tensor and its dual [106]. The purpose of this rather simple exercise
is to show that the gravitational temperature is nonzero and finite in spite of the fact
that its free gravitational energy density vanishes. From the expression of the gravi-
tational temperature (2.33), it is clear that this quantity depends on the expansion of
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the FLRW spacetime, as given in (2.31). To put this argument in the proper context,
let us consider different epochs of evolution of the universe. In the radiation dominated
era, we know that the scale factor A(t) varies as

√
t, yielding the gravitational temper-

ature as Tgrav = 1
2π

(
1
2t

)
. Similarly for the matter dominated era we can take the scale

factor to be A(t) ∝ t2/3, so that Tgrav = 1
3π

(
1
t

)
. Note that in both the radiation and

matter dominated eras, the gravitational temperature varies inversely with time. Lastly,
for the dark energy dominated era, A(t) ∝ exp(H0t), where H0 is the Hubble con-
stant. Consequently, the gravitational temperature for the dark energy dominated era is
Tgrav = H0

2π
= 1

2π

√
Λ
3 , which turns out to be directly related to the cosmological constant,

Λ. Analyzing the expression of gravitational temperature from the radiation dominated
era through the matter dominated era into the dark energy dominated era, we can say
that the gravitational temperature decreases in course of time and ultimately tends to
a value determined by the cosmological constant. Although the gravitational entropy
carried by the free gravitational field is zero in these cases, which is in agreement with
our understanding of [106], but the difference in the gravitational temperature among
different cosmological eras hints towards a hidden physics behind it. It is a matter of
independent investigation, which we leave aside for the moment.

2.3.2. LRS Bianchi I model
If we break the isotropy, then the next step would be to consider the Bianchi class of
spacetimes, namely the most general one: Bianchi type I. This spacetime is algebraically
general and doesn’t help us to apply the CET proposal. Therefore a more physically
interesting case would be to consider the Locally Rotationally Symmetric (LRS) Bianchi
type I spacetimes [96], where two of the spatial directions have the same directional
scale factor, whereas the third one has a different scale factor. The FLRW metric can
be considered to be a special case of this spatially homogeneous and anisotropic model.
A general form of the LRS Bianchi I metric is the following [97]:

ds2 = −dt2 + A2(t)dx2 + B2(t)(dy2 + dz2). (2.35)

Imposing the LRS restriction makes the Bianchi I spacetime algebraically special, with
Petrov D classification. Therefore we will have one nonzero weyl component Ψ2 which
will give us the free gravitational energy density. Choosing our vectors in accordance
with the Weyl principal tetrad, we can calculate the necessary variables as given below.
The expression for the expansion scalar and the components of the shear tensor are the
following:

Θ =
(

Ȧ

A
+ 2Ḃ

B

)
, (2.36)

σxx = −
(

2A(ḂA − ȦB)
3B

)
, σyy = B(ḂA − ȦB)

3A
, σzz = B(ḂA − ȦB)

3A
.

(2.37)
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Using these components, the shear scalar σ2 can be evaluated as follows:

σ2 = 1
3

(
Ḃ

B
− Ȧ

A

)2

. (2.38)

Consequently the expansion anisotropy is

σ2

Θ2 = 1
3

(
ḂA − ȦB

2AḂ + BȦ

)2

. (2.39)

The gravitational epoch function can be obtained using the Bel-Robinson tensor, which
is given by

W = Tabcduaubucud = (BB̈A − Ḃ2A + ȦBḂ − ÄB2)2

24A2B4 . (2.40)

For our calculations we have used the following four-vectors:

ua = (1, 0, 0, 0) , (2.41)

za =
(

0,
1
A

, 0, 0
)

. (2.42)

Here ua and za form the null vectors la and ka generating the null cone. The vectors

xa =
(

0, 0,
1
A

, 0
)

, (2.43)

and
ya =

(
0, 0, 0,

1
A

)
, (2.44)

form the (m, m̄) plane. Using these values, we calculate the free gravitational energy
density ρgrav, which is found to be

ρgrav = α

4π

∣∣∣∣∣BB̈A − Ḃ2A + ȦBḂ − ÄB2

6B2A

∣∣∣∣∣ . (2.45)

We can use our null tetrad to determine the Weyl-NP scalars. As it is of Petrov class
D, the only nonzero component is Ψ2. The values of Ψi are the following: Ψ0 = 0, Ψ1 =

0, Ψ2 = (BB̈A − Ḃ2A + ȦBḂ − ÄB2)
6B2A

, Ψ3 = 0 and Ψ4 = 0. Therefore the relation

|Ψ2| =
√

2W

3 is satisfied here, indicating that the choice of this nonholonomic tetrad
is in accordance with the local light cone structure. Subsequently the gravitational
temperature is given by

Tgrav = 1
2π

∣∣∣∣∣ȦA
∣∣∣∣∣ . (2.46)

Surprisingly, the contribution from the shear and the expansion oppose each other, and
the only contributing component remains when the isotropy is broken. The anisotropy
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in the geometry gives rise to this opposing feature between the expansion and the shear,
giving us a net contribution to the temperature, meaning that the gravitational tem-
perature is powered by the anisotropy of a homogeneous system. In order to have a
physically viable universe, the directional Hubble parameter

∣∣∣ Ȧ
A

∣∣∣ should decrease with
time t. Finally the gravitational entropy is given by the expression:

Sgrav =
∫

V

ρgravv

Tgrav

= α

12

∣∣∣∣∣A(BB̈A − Ḃ2A + ȦBḂ − ÄB2)
Ȧ

∣∣∣∣∣
∫

V
dxdydz. (2.47)

In order to analyze the above expression of gravitational entropy, we notice that

CabcdCabcd = 4(Ḃ2A − ȦBḂ − BB̈A + ÄB2)2

3A2B4 . (2.48)

Now let us impose a strong condition like the one which Penrose originally proposed, i.e.,
the Weyl scalar should increase with time as the universe expands. In the denominator
of the Weyl curvature scalar we have the volume V (= AB2) squared, and in order that
the Weyl curvature scalar may increase, the numerator must dominate and it should

increase faster than the denominator. Therefore
∣∣∣∣∣A(BB̈A − Ḃ2A + ȦBḂ − ÄB2)

Ȧ

∣∣∣∣∣ is

increasing monotonically with time as
∣∣∣A

Ȧ

∣∣∣ is also increasing with time along with the
term

∣∣∣(BB̈A − Ḃ2A + ȦBḂ − ÄB2)
∣∣∣. Therefore it is clear that the expression (2.47) for

the gravitational entropy is non negative, and increases monotonically with time. The
above equation (2.47) can be rearranged as follows:

Sgrav = α

12

∣∣∣∣∣VȦ
(√

3σ̇A − Θ + 3Ȧ

(
Ḃ

B

))∣∣∣∣∣V, (2.49)

where we have taken V = AB2. From the equation (2.49) it is clear that the gravita-
tional entropy depends on the shear σ, and as the rate of shear increases, it contributes
positively to the gravitational entropy. Therefore in order to have a physically relevant
universe, the gravitational entropy should increase monotonically with time, i.e.

Ṡgrav > 0, (2.50)

which means that

d

dt

[
A

Ȧ
(BB̈A − Ḃ2A + ȦBḂ − ÄB2)AB2

]
> 0. (2.51)

Now if we choose the condition −β > 0, where β = (Ḃ2A − ȦBḂ − BB̈A + ÄB2), the
above condition (2.51) reduces to the following identity:

β̇

β
>

Ä

Ȧ
−
(

Ȧ

A
+ Θ

)
. (2.52)
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To put the entire analysis in the proper perspective, let us observe the rate of change of
Weyl scalar:

d

dt
(CabcdCabcd) = 8

3A2B4 (ββ̇ − β2Θ). (2.53)

From the above condition (2.53) the condition of monotonicitally increasing Weyl cur-
vature scalar can be obtained as the following:

β̇

β
> Θ, if β > 0; and β̇

β
< Θ, if β < 0. (2.54)

Let us fix our condition as β < 0 for the following analysis. Note that to obtain a

monotonically increasing CabcdCabcd we need to satisfy the condition β̇

β
< Θ, which is not

always true when we want to have monotonically increasing gravitational entropy. Now
to determine the restriction on d

dt
(CabcdCabcd) for monotonically increasing gravitational

entropy, i.e., Ṡgrav > 0, once again we consider the identity (2.52). We know that

d

dt
(CabcdCabcd) = 8

3A2B4 (ββ̇ − β2Θ) = 8
3A2B4 β2

(
β̇

β
− Θ

)
. (2.55)

Imposing the condition of monotonically increasing gravitational entropy, i.e., (2.52) on
(2.55) we get the following condition :

d

dt
(CabcdCabcd) >

8
3A2B4 β2

(
Ä

Ȧ
− Ȧ

A
− 2Θ

)
. (2.56)

Now if
(

Ä

Ȧ
− Ȧ

A
− 2Θ

)
> 0, then d/dt(CabcdCabcd) is always positive, i.e., the Weyl

curvature scalar is monotonically increasing at all times. But if
(

Ä

Ȧ
− Ȧ

A
− 2Θ

)
< 0,

then d/dt(CabcdCabcd) can be negative, implying that the Weyl curvature may decrease
while the gravitational entropy is increasing, which is similar to the situation illustrated
by the authors in [102]. Thus we can conclude that the LRS Bianchi I spacetime with
different kinds of matter as their source, must satisfy the above condition (2.51) for
the monotonic increase of gravitational entropy. We are keeping this analysis general
as it is clear that the validity of condition (2.51) depends on the nature of the source.
In short, in order to have a monotonically increasing gravitational entropy, the LRS
Bianchi I spacetimes with various matter sources must satisfy the condition (2.51),
or in other words, it must have an increasing Weyl curvature scalar for the condition(

Ä

Ȧ
− Ȧ

A
− 2Θ

)
> 0. The same analysis can be done by assuming β to be positive.

Summing up, first we have shown that, if the Weyl curvature is diverging at the initial
singularity or is decreasing with increasing time, then the LRS Bianchi I spacetime can
have decreasing gravitational entropy thereby violating the Weyl curvature hypothesis,
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but in the later part of our analysis we also demonstrated that if we need a monotonically
increasing gravitational entropy, then depending on the conditions we may either have
an increasing or a decreasing Weyl scalar.

2.3.3. Liang model
Let us now consider a spacetime representing the early phase of evolution of the universe
to see whether the CET gravitational entropy proposal holds good in this era. An
example of an exact solution of the Einstein’s field equation with an irrotational fluid
source with the equation of state p = 1/3µ, energy density µ = Tabu

aub = 3/(4t2A2), and
fluid velocity u = A−1/2 ∂

∂t
, representing the radiation dominated universe, and whose

initial singularity is ‘Friedmann-like’ as considered by Liang (1972) [98], is given by the
metric

ds2 = −Adt2 + t[A−1dx2 + A2b−2(dy2 + f 2dz2)], (2.57)
where A = 1 − (4ϵ̃b2t)/9, b ≡ constant, f(y) = sin y, ϵ̃ = +1 and f(y) = sinh y, ϵ̃ = −1.
In our subsequent calculations we will assume ϵ̃ = 1.

The expansion scalar obtained in this model is

Θ = 9
2t

(9 − 8b2t)
(9 − 4b2t)3/2 . (2.58)

Apparently this model expands in the interval 0 < t <
9

8b2 , since Θ > 0 in this range,

and then shrinks in the interval 9
8b2 < t <

9
4b2 , for which Θ < 0 . Therefore we will

consider the range of t as 0 < t <
9

8b2 , since it represents an expanding universe. The
acceleration vector and the vorticity tensor turns out to be zero in this case.

The corresponding components of the shear tensor are

σxx = 108b2t

(−4b2t + 9)5/2 , σyy = −2
√

−4b2t + 9t

27 , σzz = −2sin2y
√

−4b2t + 9t

27 .

(2.59)
Therefore we can evaluate the shear scalar and the expression is given by the following:

σ2 = 108b4

(9 − 4b2t)3 . (2.60)

From the above expression it is evident that as time t increases, σ2 i.e. the shear scalar
also increases. An important parameter in these models is the ratio σ2/Θ2, which is
found to be given by

σ2

Θ2 = 24b4t

(9 − 8b2t) . (2.61)

It is already known that the ratio of the shear scalar to the expansion scalar (known
as expansion anisotropy) is a good measure of anisotropy [99, 100], and we can easily
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check that the ratio in this case is increasing in the allowed range of time. Thus the
universe begins from an isotropic singularity (as the ratio vanishes at t = 0) and then the
anisotropy increases with time as the universe expands, thereby fulfilling the requirement
of inhomogeneity [106].

We now compute the velocity dependent gravitational epoch function for this metric
using the Bel-Robinson tensor:

W = Tabcduaubucud = 2b4

27A6t2 . (2.62)

As we have both the anisotropy and the nonzero W (corresponding to tidal forces as the
magnetic part of the Weyl tensor is zero for Petrov type D spacetimes), it is eligible for
the calculation of gravitational entropy, as per the criterion set in [106]. The normalized
dimensionless scalar constructed from this quantity has the form

P̃ = W

µ2 =
( 32

243

)
b4t2

A2 . (2.63)

As t → 0+, the normalized Bel-Robinson epoch function vanishes, i.e. P̃ → 0, and P̃
increases monotonically as one moves away from the isotropic singularity.

For the sake of computation, we will use the following timelike and spacelike unit
vectors in accordance with the Weyl principal tetrad:

ua =
(

3√
−4b2t + 9

, 0, 0, 0
)

, (2.64)

and

za =
0,

1
3

√
−4b2t + 9

t
, 0, 0

 . (2.65)

The null cone is defined by the vectors ka and la (which therefore lie in the t, x
plane). The (m, m̄) plane is defined by ma, where the spacelike vectors are defined as

xa =
0, 0,

9b√
t(9 − 4b2t)2

, 0
 and ya =

0, 0, 0,
9b√

t(9 − 4b2t)2 sin2 y

.

The gravitational energy density for this Petrov type D spacetime, obtained from the
epoch function W , is given by

ρgrav = α

18π

b2

A3t
. (2.66)

This spacetime is of Petrov D type and the Weyl scalars are Ψ0 = 0, Ψ1 = 0, Ψ2 =

− 2b2

9tA3 , Ψ3 = 0, andΨ4 = 0. Therefore the relation |Ψ2| =
√

2W

3 is satisfied in this case
(as given in eqn.(2.9)).

The gravitational temperature is given by the expression

Tgrav = 1
8πtA3/2 . (2.67)
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We can see that in order to have a non-negative gravitational energy density and tem-
perature, we require the condition A > 0, which also implies that 0 < t <

9
4b2 . Finally,

from the definition of gravitational entropy we have

Sgrav =
∫

V

ρgravv

Tgrav

= 4αt3/2

9

∫
V

dxsinydydz = 4αt3/2

9

∫ x

0
dx
∫ y

0
sinydy

∫ z

0
dz. (2.68)

Thus
Sgrav = 4αt3/2

9 x(1 − cosy)z. (2.69)

Here we can identify (x, y, z) as (r, θ, ϕ), where x acts as the “radial” co-ordinate, θ ∈
[0, π], ϕ ∈ [0, 2π] and the (y, z) plane is the (m, m̄) plane. Therefore the resulting
expression for gravitational entropy will be obtained as

Sgrav = 16παt3/2r

9 . (2.70)

From the above equations (2.69) and (2.70), we can see that the gravitational entropy
is non-negative and monotonically increasing, leading to structure formation in the uni-
verse [106]. Further, the increase of shear tensor with time corresponds to the evolution
of anisotropy in the universe, which leads to an increase in the above mentioned gravita-
tional entropy. The above analysis clearly shows us that as t → 0, A → 1, so that both
the gravitational energy density ρgrav and the temperature Tgrav blow up. Consequently,
in the limit t → 0, the gravitational entropy Sgrav → 0, which is in agreement with the
Weyl curvature hypothesis.

2.3.4. Szekeres model
We now turn to the spatially inhomogeneous models with irrotational dust as source,
i.e., the class II Szekeres solution of the Einstein’s field equations, which is known to be
a Petrov type D spacetime. The metric under our consideration is the following [52]:

ds2 = t4[−dt2 + dx2 + dy2 + (A − β+t2)2dz2], (2.71)

where the function A is defined as

A = a(z) + b(z)x + c(z)y − 5β+(z)(x2 + y2). (2.72)

In the class II Szekeres models, the parameters a(z), b(z), c(z), andβ+ are arbitrary
smooth functions of z, which gives us the freedom of choosing coordinates. For β+ = 0,
the class II Szekeres solution reduces to FLRW metric. We also observe that if we
assume a = 1, b = 0, c = 0 further, i.e, A = 1, we get the Cartesian form of FLRW
metric directly. The fluid four velocity is defined as u = t−2 ∂

∂t
and the energy density

is given by
µ = 12

t6

(
1 −

(
β+

A

)
t2

) . (2.73)
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If the energy density is non-negative, then we need the following conditions to be sat-

isfied: A > 0, (A − β+t2) > 0. This imposes a bound on t because 0 < t <

√
A

β+
. The

expansion scalar of the universe is obtained as

Θ = 2(3A − 4β+t2)
t3(A − β+t2) . (2.74)

Thus this model is expanding throughout the cosmic time since Θ > 0 in the allowed

range of t due to the fact that 0 < t <

√
3

2

√
A

β+
.

The shear tensor in this case is given by

σxx = 2β+t3

3(A − β+t2) , σyy = 2β+t3

3(A − β+t2) , σzz = 4β+t3

3 (β+t2 − A). (2.75)

The shear scalar is given by
σ2 = 8β2

+
9t2 . (2.76)

The expansion anisotropy in this universe is therefore given by

σ2

Θ2 = 2β2
+t4(A − β+t2)2

9(3A − 4β+t2)2 . (2.77)

The above ratio vanishes at t = 0, representing an isotropic initial singularity, and
subsequently increases with time. Therefore the anisotropy increases with the evolution
and expansion of the universe giving rise to structure formation.

Once again using the fluid 4−velocity, we construct the positive scalar from the Bel-
Robinson tensor:

W = Tabcduaubucud = 6β2
+

t8(β+t2 − A)2 . (2.78)

Therefore we get the normalized dimensionless scalar in the form

P̃ = W

µ2 = t4β2
+

24A2 . (2.79)

Thus, as t → 0+, the normalized Bel-Robinson epoch function vanishes (P̃ → 0). Let us
construct the timelike and spacelike unit vectors in accordance with the Weyl principal
tetrad so that uaua = −1, zaza = 1 and uaza = 0, to get

ua =
( 1

t2 , 0, 0, 0
)

, (2.80)

and
za =

(
0, 0, 0,

1
t2(A − β+t2)

)
. (2.81)
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The (m, m̄) plane is defined by ma which is defined in Section II, where the spacelike
vectors are now defined as xa =

(
0,

1
t2 , 0, 0

)
and ya =

(
0, 0,

1
t2 , 0

)
.

From the definition of the gravitational energy density of Petrov type D spacetimes,
we get

ρgrav = αβ+

2πt4(A − β+t2) , (2.82)

The above expression of gravitational energy density clearly indicates that for the non-
negativity of the gravitational energy density, the following conditions must be fulfilled:
β+ > 0, A > β+t2. Therefore A must be a positive quantity. The Weyl scalars are:

Ψ0 = 0, Ψ1 = 0, Ψ2 = − 2β+

t4(β+t2 − A) , Ψ3 = 0, andΨ4 = 0. So the relation |Ψ2| =
√

2W

3
is now satisfied.

The gravitational temperature is given by

Tgrav = (A − 2β+t2)
πt3(A − β+t2) . (2.83)

From the above equation (2.83) it is clear that we require an additional constraint in the
form (A − 2β+t2) > 0 in order to ensure the non-negativity of the temperature. Thus

the allowed range of cosmic time should be 0 < t <

√
A

2β+
.

As before, using the relevant definition, we obtain the expression of gravitational
entropy as follows

Sgrav = αt5

2

∫ x

0

∫ y

0

∫ z

0

[
1 + β+t2

(A(x, y, z) − 2β+(z)t2)

]
β+dxdydz = αt5

2 T (t), (2.84)

where
T (t) =

∫ x

0

∫ y

0

∫ z

0

[
1 + β+t2

(A(x, y, z) − 2β+(z)t2)

]
β+dxdydz.

The term T (t) is not directly integrable because of the presence of unknown functions,
but the term in the parenthesis is increasing monotonically with t as the denominator of
the second term is decreasing with time and the numerator is directly proportional to t2.
Therefore although it is not possible to integrate this equation further, the expression
(2.84) of the gravitational entropy is not only non-negative but is also monotonically in-
creasing, thereby satisfying the conditions of structure formation as laid down in [106].
Moreover, as t → 0+, both the gravitational energy density ρgrav and the temperature
Tgrav diverge, and as a result the gravitational entropy vanishes, i.e., Sgrav → 0. Fur-
ther we know that β+ = 0 gives us the FLRW metric and indeed the expression of
gravitational entropy (2.84) reduces to zero in that case.

2.3.5. Bianchi VIh model
Finally we consider a spacetime which fits a general class of solutions of the Einstein’s
field equations but simple enough to study a perturbed kind of flat spacetime like the
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perturbed FLRW spacetime. We will show that the deviation from conformal flatness
and isotropy leads us to an inhomogeneous spacetime where gravitational entropy is
generated.

Wainwright and Anderson [53], showed that in the Bianchi VIh class of models, a
suitable choice of parameters may help to represent the quasi-isotropic stage beginning
at the initial singularity, leading to an isotropic singularity for these spacetimes. By
assuming the parameter αc to be small in that model, one can consider deviations about
this flat FLRW model. In the line element in [53], we set αs = 0 and αm = 1, so that
the line-element in conformal time coordinates is obtained as follows:

ds2 = τ 4/(3γ−2)(−A2(γ−1)dτ 2 + A2q1dx2 + A2q2e2r[s+(3γ−2)]xdy2 + A2q3e2r[s−(3γ−2)]xdz2),
(2.85)

where A2−γ = 1 + αcτ
2, q1 = γ

2 , q2 = 2 − γ + s

4 , q3 = 2 − γ − s

4 , s2 = (3γ +

2)(2 − γ), and r2 = (3γ + 2)αc

4(2 − γ)(3γ − 2)2 . The parameter denoted by αc determines

the curvature of the spacelike hypersurfaces orthogonal to u = A1−γτ−2/(3γ−2) ∂

∂τ
. For

αc = 0, we obtain the flat FLRW solution.
In full generality, this metric is of Petrov type I, but the CET gravitational entropy

measure only works on the Petrov types D and N. Therefore we will only consider the
case for γ = 4/3 which reduces the spacetime to Petrov type D. The resulting Petrov
type D metric is given by

ds2 = τ 2
(

−(αcτ
2 + 1)dτ 2 + (αcτ

2 + 1)2dx2 + (αcτ
2 + 1)2e6√

αcxdy2 + 1
(αcτ 2 + 1)dz2

)
.

(2.86)
The expansion scalar is given by the following expression

Θ = 3(2αcτ
2 + 1)

τ 2(αcτ 2 + 1)3/2 , (2.87)

and the shear tensor is

σxx = αcτ
2
√

αcτ 2 + 1, σyy = αcτ
2e6√

αcx
√

αcτ 2 + 1, σzz = −2αcτ
2

(αcτ 2 + 1)5/2 .

(2.88)
This model is also expanding with time as the expansion Θ > 0 for all τ . In this case,
the shear scalar is given by

σ2 = 3α2
c

(1 + αcτ 2)3 . (2.89)

Once again, as a measure of expansion anisotropy we compute σ/Θ which is given by
the following expression:

σ2

Θ2 = α2
cτ 4

3(2αcτ 2 + 1)2 . (2.90)
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Thus the ratio vanishes at τ = 0 indicating an initial isotropic singularity as in the
previous models. It then increases with time and becomes constant as time tends to
infinity. Therefore the time evolution of this universe is such that as time increases, the
expansion anisotropy increases from the isotropic initial singularity, and gradually the
rate of increase of this ratio decreases and finally it becomes more or less constant in the
distant future. It may be mentioned here that exact spatially homogeneous cosmologies
in which this ratio is constant, were studied in [101].

We can now easily compute the energy density as

µ = 3
τ 4(αcτ 2 + 1)2 . (2.91)

Next we construct the velocity dependent gravitational epoch function from the Bel-
Robinson tensor, which yields

W = Tabcduaubucud = 6α2
c

τ 4(αcτ 2 + 1)6 . (2.92)

In order to construct a dimensionless scalar from this quantity, we normalize the standard
epoch function with the square of µ = Tabu

aub to get

P̃ = W

µ2 = 2α2
cτ 4

3(αcτ 2 + 1)2 . (2.93)

As τ → 0+, the normalized Bel-Robinson epoch function vanishes: P̃ → 0. Therefore P̃
behaves appropriately as the isotropic singularity is approached.

Now, for the analysis of the CET gravitational entropy for this spacetime, we will use
the following unit vectors, where ua is a timelike and za is a spacelike unit vector. Here
we choose our vectors such that they specify a Weyl principal tetrad:

ua =
(

1
τ
√

αcτ 2 + 1
, 0, 0, 0

)
, (2.94)

and
za =

(
0, 0, 0,

√
αcτ 2 + 1

τ

)
. (2.95)

We note that this choice of tetrads is also supported by the work of Pelavas and Co-
ley in [48]. In this case, the (m, m̄) plane is defined by the spacelike vectors xa =(

0,
1

τ(αcτ 2 + 1) , 0, 0
)

and ya =
(

0, 0,
1

τ(αcτ 2 + 1)e3√
αcx

, 0
)

, with the null cone defined

by la and ka, as mentioned in Section II, along with the definition of ma.
From the definition of gravitational energy density we now obtain

ρgrav = ααc

2πτ 2(αcτ 2 + 1)3 . (2.96)
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As this spacetime is a Petrov D spacetime, the Weyl scalars are obtained as Ψ0 = 0, Ψ1 =
0, Ψ2 = 2αc

τ 2(1 + αcτ 2)3 , Ψ3 = 0, andΨ4 = 0. Therefore the relation (2.9) is satisfied in
this case. Similarly the gravitational temperature can be calculated as

Tgrav = 1
2πτ 2(αcτ 2 + 1)3/2 . (2.97)

From the above two expressions of the gravitational energy density (2.96) and the tem-
perature (2.97), we can clearly observe that as τ → 0+, both ρgrav and Tgrav diverge
near the isotropic singularity.

Now integrating over a volume V on a hypersurface of constant τ , we get the expression
of gravitational entropy

Sgrav = ααcτ
3
∫

V
e3√

αcxdxdydz = ααcτ
3
∫ x

0
e3√

αcxdx
∫ y

0
dy
∫ z

0
dz

= α
√

αc

3 τ 3(e3√
αcx − 1)yz = α

√
αc

3 V τ 3, (2.98)

where V = (e3√
αcx − 1)yz is a term which depends on the spatial volume, and will

monotonically increase with increasing spatial dimensions. We note that it is not possible
to determine the bound of τ in (2.98). However, the final expression indicates that not
only the gravitational entropy increases with time τ , but for any increasing volume (i.e.,
larger values of x, y, z), the gravitational entropy is increasing monotonically. Therefore,
once again we find that Sgrav is non-negative and monotonic in nature, and as τ → 0+,
the gravitational entropy vanishes, i.e. Sgrav → 0, in accordance with Penrose’s Weyl
curvature hypothesis. It is also evident that for αc ≃ 0, the spacetime becomes FLRW-
like, with vanishing gravitational entropy.

2.4. Discussions and Conclusions
In the very first case for the homogeneous and isotropic FLRW universe, we have shown
that the gravitational entropy is zero because the space-time is conformally flat, thereby
supporting the Weyl curvature hypothesis, as the free gravitational field in this case
does not carry any gravitational energy density while maintaining a finite gravitational
temperature. In the LRS Bianchi I case, we have shown explicitly that the gravitational
entropy is monotonically increasing with time if its Weyl curvature increases with time,
but if there are matter sources in the spacetime which cause the Weyl curvature to
decrease in course of time, then the LRS Bianchi I spacetime will have a gravitational
entropy which decreases with time, thereby violating the Weyl curvature hypothesis.
That is, in order to have a non negative monotonically increasing gravitational entropy,
the LRS Bianchi I spacetime must have monotonically increasing Weyl curvature. We
are neglecting the cases where

∣∣∣ Ȧ
A

∣∣∣ is increasing with time as it will give rise to unrealistic
situations where the gravitational temperature will increase with time and at the initial
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singularity it is zero or finite. We have also shown explicitly that if we want to have a non
negative monotonically increasing gravitational entropy, depending on the conditions
imposed by us, the Weyl curvature scalar can either increase or decrease. In other
words, under certain conditions the time derivative of gravitational entropy is positive,
i.e., the CET entropy is increasing monotonically.

The above analysis indicates that in the Liang, Szekeres and Bianchi V Ih models
considered by us, the gravitational entropy goes to zero as we approach the initial sin-
gularity and increases monotonically with non-negative value in course of time, thereby
fulfilling the necessary requirements to be satisfied by the gravitational entropy in these
space-times, in order to ensure structure formation in the universe [106]. We found that
in each of these cases, representing different phases of evolution of the universe, the ex-
pansion anisotropy increases as times elapses after the initial isotropic singularity, and
it appears that there is a correlation between the expansion anisotropy and the gravita-
tional entropy. We also showed in a general formalism, how the shear tensor is related
to the Weyl tensor. Therefore the CET formalism in these cases clearly gives us a well
behaved entropy measure which increases as the structure formation progresses, result-
ing in an increase in anisotropy of these universes. These features make these models
physically more realistic for describing the actual evolution of the universe. In all the
cases we found that the gravitational entropy vanishes at the initial isotropic singularity.
Moreover in each of these cases, the gravitational energy density and the temperature
are well-behaved throughout the evolution of the conformal time associated with the
metric.

In a recent paper [102] the authors have illustrated a counterexample involving a class
of inhomogeneous universes that are supported by a chameleon massless scalar field and
exhibit anisotropic spacetime shearing effects. We will now present a careful review of
this work and compare it with our present work.

In [102], the shear scalar depends on the Hubble parameter and it is increasing with
time. Also the gravitational temperature which they are getting, is independent of time,
which can always happen, as in the case of dark energy dominated FLRW universe.
In their model, the CET entropy is increasing with time, whereas their gravitational
energy density is decreasing with time, which is being compensated by gravitational
anisotropic pressure. Finally the authors have shown that the time derivative of gravi-
tational entropy is always positive. The interesting point that the authors in [102] are
making is that the Weyl curvature is decreasing with time despite having increasing
CET gravitational entropy, claiming that this violates the Weyl curvature hypothesis.

Here, in this paper, we have considered a variety of different classes of cosmological
models and have showed explicitly that for each of them the CET gravitational entropy
is increasing. The authors in [102] stated that the difference between our studies is that
their calculation yields time independent gravitational temperature whereas we have
found the gravitational temperature to be time dependent. We want to clarify that this
is a model dependent phenomenon, and we also have such a case for the dark energy
dominated FLRW model where the gravitational temperature is time independent. The
important thing to note is that although for the LRS Bianchi I case the Weyl curvature
must be increasing in time for a monotonically increasing gravitational entropy, it is
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not so for the other models considered by us. For the Liang, Szekeres and also for the
Bianchi VIh model, although the CET entropy is clearly increasing, the magnitude of Ψ2
is decreasing with time, similar to that in [102]. We want to emphasize that this does
not the violate the Weyl curvature hypothesis, as the CET proposal was arrived at after
various authors worked with different measures of gravitational entropy, especially the
initial case, i.e., where the simple Weyl curvature scalar gives the measure of gravitational
entropy. This is precisely the motivation for CET and other measures, as there are plenty
of spacetimes where the Weyl curvature is decreasing, giving us a decreasing gravitational
entropy if we take the simple Weyl curvature entropy as our measure.

We also want to draw attention to the requirements listed in the original CET paper
[106] for a viable gravitational entropy in the form of E1...E5 at the end of Section 2
in their paper. There is no such requirement where the gravitational entropy should
increase with the Weyl curvature, although this was the original proposal of Penrose,
but this condition was too strong to be satisfied and subsequently new measures of
gravitational entropy were proposed in the form of a suitable function of the Weyl
curvature. Therefore we must be very clear when we say that it is satisfying the Weyl
curvature hypothesis. What we really mean is that the spacetime has a viable non
negative gravitational entropy which is monotonically increasing with time, which is also
the case for [102]. Therefore our conclusions are in accordance with each other, i.e., both
these papers are getting non negative and monotonically increasing CET gravitational
entropy. The surprising result in [102] is that, throughout the entire evolution, the matter
curvature dominates over the Weyl curvature unlike our cases, but in spite of that the
CET gravitational entropy is non negative and monotonically increasing, indicating the
robustness of the CET definition of gravitational entropy. The authors in [102] mention
that the shear also plays a very important role, which is true as it is not only affecting
the dynamics of the electric part of the Weyl tensor resulting in a change in gravitational
energy density, but it is also contained in the gravitational temperature. It is to be noted
that [102] showed that increasing Weyl is NOT necessary but is a sufficient condition
for an increasing entropy, and throughout this paper we have worked with this sufficient
condition.

Further, we must remember that the CET proposal is independent of any specific defi-
nition of gravitational temperature. Therefore, theoretically speaking, different measures
of gravitational temperature can be employed. Regarding the role of the definition of
gravitational temperature, one can say that it will change the exact results for the grav-
itational entropy but whether it will affect the monotonicity of the gravitational entropy
is a matter of separate investigation. In the definition proposed in [106], it depends on
the acceleration, expansion, shear tensor and the rotation tensor (if we generalize the
definition), capturing all the necessary variables. The time independent or dependent
cases may arise from the internal dynamics of these variables, i.e., it is model dependent.

In conclusion, we can clearly state that the definitions of gravitational entropy pro-
posed by Pelavas et al. [48] and Clifton et al. [106], i.e., P̃ and Sgrav, are in conformity
with the Weyl curvature hypothesis in the case of the models considered by us, and
provides a very good description of the gravitational entropy on a local scale. It is to be
noted that for a large scale description, one needs to employ the method of averaging,
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similar to that considered in [72]. ”
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traversable wormholes
The contents of this chapter have been published in a journal, details of which are given
below:

JOURNAL REFERENCE: General Relativity and Gravitation, 54:47 (2022)
ARTICLE NAME: How appropriate are the gravitational entropy proposals for

traversable wormholes?
DOI: 10.1007/s10714-022-02934-3

The paper is quoted below:

“

3.1. Introduction
Gravitational entropy is the entropy measure reflecting the degrees of freedom associated
with the free gravitational field. In any physical process involving gravity, the clumping
of matter (structure formation) or the intensity of gravitational field in a local region of
spacetime can be measured in terms of this quantity. Historically, this idea was proposed
to justify the low entropy state of the initial universe, i.e., entropy is associated with the
free gravitational field even during the time of big bang, so that a gravity dominated
evolution of the universe does not violate the second law of thermodynamics. Another
importance of gravitational entropy is that it puts the black hole entropy in the proper
context, making it the special case of the gravitational entropy of free gravitational fields.
Black hole (BH) entropy has a special position in physics because it is the only entropy
which is proportional to the area of the gravitating object, unlike other thermodynamic
entropies which are proportional to the volume.

Gravitational entropy proposals (GE proposals) can be studied in both local and global
contexts. Locally, BH entropy (or the entropy of any astrophysical object) represents
the immense concentration of entropy in a given region of spacetime. Thus gravity
condenses matter leading to the increase in entropy of the universe, and BH entropy
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is the ultimate result of that process. Global studies on the evolution of the universe
also indicate that the GE is monotonically increasing and well-behaved near the initial
singularity. The study of GE is also important in thermodynamics. In gravitational
theories, geometry and energy are interrelated, and both kinds of measures (geometric
and thermodynamic) are available for GE. It not only gives us an idea of the nature of
some specific geometry but also encapsulates the overall energetics of that region. The
study of GE also tells us how matter and free gravitational fields behave in a particular
region or in an overall fashion. Thus the concept of GE is still developing, as pointed
out in [106].

Roger Penrose’s Weyl curvature hypothesis (WCH) [103] was the first effort to un-
derstand GE in a formal way. He argued that entropy can be assigned to the free
gravitational field, and the Weyl curvature serves as a measure of it. It was assumed
that the universe began from a singular state where the Weyl component was much
smaller compared to the Ricci component. To this end, the FLRW models provide us
an approximate description of the early phase of the universe. The Weyl curvature was
zero at early times for the FLRW case, but is large in the Schwarzschild-like spacetimes,
which represents the geometry of a spherically symmetric star or a black hole formed
during the later phases of evolution, thereby indicating the validity of the Weyl curva-
ture hypothesis, as free gravitational entropy is larger in strongly gravitating systems
than in flat spacetimes. This is the kind of behavior that we expect from a description
of GE, i.e., it should increase throughout the history of the universe, in agreement with
the second law of thermodynamics [104, 105]. Even then, there is still doubt about the
definition of gravitational entropy in a way similar to thermodynamic entropy, which
may be applied to all gravitating systems [106].

In 2008, Rudjord, Grøn and Hervik [107] pointed out that the Weyl scalar is not a
good measure of GE. The same is true for the ratio of the Weyl scalar squared to the
squared Ricci tensor. They explicitly showed that their proposal of GE, i.e., the ratio of
the Weyl scalar to the Kretschmann scalar, serves as a good measure and reproduces the
Hawking-Bekenstein entropy for black holes [169, 39]. Later in 2012, Romero, Thomas
and Pérez [109] applied it to other systems of black holes and wormholes, validating and
extending the proposal of Rudjord et al. In 2013, Clifton et al. [106] provided a measure
of gravitational entropy based on the square root of the Bel-Robinson tensor, an idea
motivated by thermodynamic considerations, which has a natural interpretation as the
effective super-energy-momentum tensor of free gravitational fields. This is the so-called
Clifton-Ellis-Tavakol (CET) proposal of gravitational entropy. But this definition is only
valid for General Relativity (GR), where the Bel-Robinson tensor can be defined in such
a way. Among the above two measures of gravitational entropy, the one due to Rudjord
et al. and Romero et al. represents a geometrical measure, whereas the CET proposal
gives us a thermodynamic measure of GE.

Sussman [110] introduced a weighed scalar average formalism (the “q-average” for-
malism) for the study of spherically symmetric LTB dust models and considered the
application of this formalism to the definition of gravitational entropy functional pro-
posed by Hosoya et al. (HB proposal) [111]. Subsequently, Sussman and Larena [112]
analyzed the generic LTB dust models to probe the CET proposal and the HB pro-
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posal (also a variant of the HB proposal), suggesting that the notion of gravitational
entropy is theoretically robust, and can also be applied to many other generic space-
times. The same authors studied the evolution of the CET gravitational entropy for the
local expanding cosmic CDM voids using a nonperturbative approach [113].

Gravitational entropy can also be computed for objects like black holes and wormholes.
Wormholes are shortcuts between two spacetime points. In most cases, these holes are
unstable or causally disconnected, i.e., observers encounter closed timelike geodesics
while travelling through them. Here we are interested in the traversable wormholes
as they are physically more interesting because observers do not violate any causality
while crossing them, there are no horizons, nor any curvature singularities giving rise
to exotic physical scenarios [114]. The study of gravitational entropy in the case of the
traversable wormholes is important because it gives us a thermodynamic perspective of
the physical reality of these solutions. If the gravitational entropy is well behaved, then
these solutions are thermodynamically robust. Otherwise it may be thermodynamically
unstable, and thus traversability may not be guaranteed. We now present a brief review
of the important solutions of traversable wormholes.

The idea of traversable wormhole was first proposed by H. G. Ellis in 1973 [115], who
showed that a coupling of geometry with a scalar field ϕ produces a static, spherically
symmetric, geodesically complete, horizonless space-time manifold with a topological
hole (termed as a drainhole) in its center. In 2005, Das and Kar [116] showed that the
Ellis wormhole can also be obtained using tachyon matter as the source with a positive
cosmological constant in 3 + 1 dimensions. The Ellis wormhole has been studied by
several authors [117, 118, 119] mainly in the field of deflection of light by massive objects,
gravitational microlensing and wormhole shadows [120]. In [121] it was shown that when
the throat is set into rotation, the static wormhole evolves into a rotating 4-dimensional
Ellis wormhole supported by phantom scalar field. Recently, the Ellis wormhole without
a phantom scalar field has been demonstrated [122] in 3+1 dimensional Einstein-scalar-
Gauss-Bonnet theory (EsGB) in electrovacuum. By nonminimally coupling the phantom
scalar field with the Maxwell field in [123], the authors obtained charged Ellis wormhole
and black hole solutions in the Einstein-Maxwell-scalar theory.

Independently, Bronnikov in 1973 proposed the same idea in scalar tensor theories on
vacuum and electrovacuum spherically symmetric static solutions [124]. Subsequently
Morris and Thorne also discussed the traversable wormholes in their 1988 paper [125].
Matt Visser in 1989 [126] discussed some examples of traversable wormholes. In 1995,
Cramer et.al. [127] proposed another kind of traversable wormhole with negative mass
cosmic strings which might have occurred in the early universe. In 1954, Papapetrou
proposed the exponential spherically symmetric metric induced by scalar and antiscalar
background fields [128] which represents a counterpart to the Schwarzschild black hole.
Recently [129], it was shown that this metric has its origin within a wide class of scalar
and antiscalar solutions of the Einstein equations parameterized by scalar charge. The
exact rotational generalization of the antiscalar Papapetrou spacetime as a viable al-
ternative to the Kerr black hole has been studied in [130]. The Darmour-Solodukhin
wormhole was proposed in 2007 by T. Darmour and S. N. Solodukhin [131]. Recently
Matyjasek [132] have demonstrated that for scalar fields there is a parameter space which
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allows this wormhole to be a traversable one.
The solution of the Einstein-Maxwell system of equations was found by Brill [133]

in 1964. Recently, the thermodynamics of the Taub-NUT solution has been studied
in the Euclidean sector by imposing the condition for the absence of Misner strings
[134]. More work have been done recently by several authors [135, 136, 137, 138, 139]
on the various thermodynamic issues. Clement et.al. [140] investigated the electrically
charged particle motions for such a metric. More recently [141], nonlinear extensions of
gravitating dyon-like NUT wormholes have been studied. A recent work by J. Podolský
on accelerating NUT blackholes [142] shows that accelerating NUT blackholes act as a
throat of maximal curvature connecting our universe (r > 0) with the second parallel
universe in the region (r < 0).

Richarte and Simeone constructed thin-shell Lorentzian wormholes with spherical
symmetry in 5-dimensional Einstein-Gauss-Bonnet theory. For certain values of the
parameters, these wormholes could be supported by ordinary matter [143]. Clement
et. al [144] showed that traversable wormholes can exist without exotic matter but
with a NUT parameter, and there is no causality violation in such cases. Beato et. al.
[145] found that the self-gravitating, analytic and globally regular Skyrmion solution
of the Einstein–Skyrme system in presence of a cosmological constant has a non-trivial
byproduct representing traversable AdS wormholes with NUT parameter, in which the
only “exotic matter” required for their construction is a negative cosmological constant.
Carvente et.al. [146] studied traversable ℓ-wormholes supported by ghost scalar fields.
Lima et. al. [240] have recently calculated the gravitational entropy for wormholes with
exotic matter and in galactic halos.

G. Horowitz et. al. in 2019 discussed the nucleation process of traversable worm-
holes through a nonperturbative process in quantum gravity [148]. In the same year
Mattingly et.al. [149] determined the curvature invariants of Lorentzian traversable
wormholes. In [150] the authors have shown that the violation of the null energy condi-
tion by matter, required by the traversable wormholes, can be avoided in spacetimes with
torsion. Sebastiani et. al. [151] proposed a unified classical approach for the studying
idealized gravitational compact objects like wormholes (WHs) and horizonless stars by
using the characteristic echoes generated in the ringdown phase. Therefore, the study
of traversable WHs becomes important in the context of GE, as more and more of such
studies have revealed that these systems may exist as possible astrophysical objects. If
traversable WHs do exist, then the different proposals of GE must be tested on them to
see whether they exhibit a viable GE.

There have been many definitions of black hole entropy and wormhole entropy using
quantized theories of gravity, such as string theory and loop quantum gravity. However,
in this paper we have addressed the problem from two different perspectives: the first
one is the phenomenological approach proposed in [107] and expanded in [109], in which
the Weyl curvature hypothesis was tested against the expressions for the entropy of
cosmological models and black holes. Comprehensive study of the various proposals of
gravitational entropy in the case of various traversable wormholes is not available in liter-
ature. This has prompted us to analyze the gravitational entropy of wormholes in terms
of the second perspective: the CET proposal, which yields us a pure thermodynamic
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measure of GE.
In our previous works on the accelerating black holes [153] and the cosmological models

[154], we examined the validity of the Weyl scalar proposal of GE (proposed by Rudjord
et al.), and the CET proposal of GE, respectively, for two different types of systems. In
this paper we are extending our previous studies on gravitational entropy to the case
of traversable wormholes using these two proposals. As the Weyl scalar proposal is
based on a purely geometric approach, whereas the CET proposal includes the details
of relativistic thermodynamics, it is interesting to study them side by side on the same
system to see how these proposals differ from each other when applied to a specific
spacetime geometry. A similar study was done by Pérez et al [156] in the context of
Kerr black holes. One purpose of this current work is also to see how our results for
traversable wormholes compare with the results found in [156]. These comparisons will
provide us a better understanding of these different estimators of GE.

In this paper, we have examined various traversable wormholes from the simplest to
the more involved ones. The Ellis wormhole is the simplest case. It is a zero mass
traversable WH which connects two asymptotically flat regions at its throat. There
have been many proposals for the energy source of such WHs making it not only an
ideal toy model to study, but also having rich physical content. In the same spirit we
have considered the exponential metric WH, which is a much more general spherically
symmetric spacetime, and is traversable at the throat. There are WHs which can also
mimic BHs, and the simplest case of such a WH is the Darmour-Solodukhin (DS) WH.
This is of great physical interest as it is not only traversable, but also because it mimics
the Schwarzschild BH to an outside observer, for all practical purposes. In the spherically
symmetric static cases, both the exponential metric WH and the DS WH possess rich
mathematical and physical structure. In order to examine the consequence of charge
present in the WH system on the GE of that system, we considered the Maldacena ansatz,
which connects two oppositely charged BHs. As for the stationary cases, we considered
the Brill NUT WH (where both the magnetic and electric charges are present), and
is an extension of the Reissner-Nordström solution with a Newman–Unti–Tamburino
(NUT) parameter. This would enable us to study the behaviour of GE in Einstein-
Maxwell systems, where the NUT parameter controls the WH neck. Extending this
to cosmological settings, we consider an AdS NUT WH in the presence of a negative
cosmological constant, so as to study the effect of Λ on the gravitational entropy of NUT
WH. We have considered these widely different traversable WHs, in order to study the
behaviour of GE explicitly in such scenarios, and to determine whether the GE proposals
considered by us are physically viable or not.

Our paper is organized as follows: In Section II we have explained the gravitational
entropy proposal given by Rudjord et al [107] and expanded by Romero et al [109], and
the CET proposal of gravitational entropy [106]. In the next section we have analysed the
gravitational entropy for these systems. In section IV we have tested the validity of the
Tolman law in the case of static spherically symmetric WHs, and subsequently presented
the summary of our work and the concluding remarks in sections V and VI. Finally, in
the appendix we have also included a brief analysis of the traversable AdS wormhole
and followed it up for a general wormhole ansatz recently proposed by Maldacena.
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3.2. Gravitational Entropy
In this section we will describe briefly the two proposals of gravitational entropy, namely
the Weyl scalar proposal proposed by Rudjord et al. [107] and extended by Romero et
al. [109], and the CET proposal given by Clifton et al. [106]. As chronologically the
Rudjord et al. proposal came first, and then the CET proposal, we will be following this
sequence in our description and subsequent analysis.

3.2.1. Weyl scalar proposals
Here we provide a brief description of the proposal given in [107] for the determination
of gravitational entropy. The entropy on a surface is described by the surface integral

Sσ = ks

∫
σ

Ψ.dσ, (3.1)

where σ denotes the surface and the vector field Ψ is given by [107]:

Ψ = Pier, (3.2)

with er as a unit radial vector. Here Pi represents either P1 or P2, which are described
below. The scalar P1 is defined in terms of the Weyl scalar (W ) and the Krestchmann
scalar (K) in the form [107]:

P 2
1 = W

K
= CabcdCabcd

RabcdRabcd
, (3.3)

where the Weyl tensor in n dimensions is given by [157]

Cαβγδ = Rαβγδ + 2
(n − 2)(gα[γ)Rδ]β − gβ[γ)Rδ]α) + 2

(n − 1)(n − 2)Rgα[γgδ]β. (3.4)

Equation (3.3) is a purely geometric measure of GE, and hence it nicely encompasses the
curvature dynamics. Here, the gravitational entropy is evaluated by doing computations
in a 3-space. The spatial metric hab is defined as:

hij = gij − gi0gj0

g00
, (3.5)

where gµν is the corresponding 4-dimensional space-time metric, and Latin indices denote
spatial components, i, j = 1, 2, 3. So the infinitesimal surface element is given by:

dσ =
√

h√
hrr

dθdϕ. (3.6)

Since wormholes does not have any horizons, it is preferable to switch into entropy
density, s. We imagine an enclosed hypersurface, and apply Gauss’s divergence theorem
to find the entropy density [107] as the following:

s = ks|∇.Ψ|. (3.7)
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If we only consider the radial contribution of the vector Ψ then the gravitational entropy
density becomes

s = ks|∇.Ψ| = ks√
−g

∣∣∣∣∣ ∂

∂r
(
√

−gPi)
∣∣∣∣∣ . (3.8)

This is useful in the spacetimes with spherical symmetry.
We have also discussed the possibility of having an angular component in the vector

field Ψ for axisymmetric spacetimes as proposed in [109]. Using this modified definition
of Ψ, we can calculate the gravitational entropy density for axisymmetric space-times,
which is given by the following expression:

s = ks|∇.Ψ| = ks√
−g

∣∣∣∣∣
(

∂

∂r
(
√

−gPi) + ∂

∂θ
(
√

−gPi)
)∣∣∣∣∣ . (3.9)

Therefore the P1, is not the only case that we have considered. We have also used the
measure proposed in [109] for the expression of Pi in the case of metrics having nonzero
gtϕ component, which is given below:

P2 = CabcdCabcd. (3.10)

Using this definition of P2 we have calculated the gravitational entropy density for the
relevant wormholes. It may be noted that the pure Weyl square proposal (in Eq. (3.10))
fails at isotropic singularities, and cannot handle the decaying and growing perturba-
tion modes. As these quantities are purely geometric in nature that incorporate the
connection of the Weyl tensor with the free gravitational field, they do not provide a
theoretical connection with thermodynamics or Information theory. Further, as the ratio
in Eq. (3.3) is a dimensionless scalar, it cannot be related to the Hawking-Bekenstein
entropy. Moreover, these geometric proposals are frame-independent, and hence have
no connection with the worldlines of physical fluids. While P1 can address the above
objections, but it does not seem to give the correct sense of time for a radiating source
(see [106] and references therein).

3.2.2. Clifton-Ellis-Tavakol (CET) proposal
For the static spherically symmetric WHs we have also used the CET proposal [106] to
examine the behaviour of GE for these systems. To establish the validity of this pro-
posal, the CET paper has shown that it not only reproduces the Hawking-Bekenstein
entropy for BHs, but also its entropy production rate, ṡgrav, is always non-negative. This
proposal begins with the construction of the second order symmetric traceless tensor tab

which is obtained from the algebraic “square root” of the fourth order Bel-Robinson
tensor Tabcd, because Tabcd is the only totally symmetric traceless tensor that can be con-
structed out of the conformal Weyl tensor Cabcd, and secondly, Tabcd is fourth order with
dimensions as L−4 making its “square root” necessary. This tab helps us to derive the
“effective” or “super energy–momentum tensor” Tab of the free gravitational field. We
can also compute other variables like gravitational energy density ρgrav, gravitational
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pressure pgrav, anisotropic stresses Πab
grav, and heat flux qa

grav by contracting with the
matter 4-velocity ua and projector tensor hab = uaub + gab. Subsequently, by analogy
with the standard laws of fluid thermodynamics applied on the quantities associated
with Tab, the notion of gravitational entropy emerges clearly. In [106], the authors have
considered two types of gravitational fields: the “Coulomb-like” (Petrov type D) and
the “wave-like” (Petrov type N) fields for which Tab reduces to expressions involving the
Newman–Penrose conformal invariants Ψ2 and Ψ4. We will be restraining our discus-
sions to Coulomb-like fields, and therefore will only discuss the Petrov type D case. For
this case, CET derived the following Tab and the associated fluxes:

T ab

8π
= α|Ψ2|

[
xaxb + yayb − 2

(
zazb − uaub

)]
= ρgravuaub + pgravhab + 2q(a

gravub) + Πab
grav,

(3.11)

8πρgrav = 2α|Ψ2|, pgrav = qgrav = 0, 8πΠab
grav = α|Ψ2|

2 (xaxb + yayb − zazb + uaub).

Further, the gravito-electromagnetic properties of the Weyl tensor, and the 1+3 decom-
position of the equations is used to express the gravitational “Super energy density”
function w as follows:

w = Tabcduaubucud = 1
4
(
Eb

aEa
b + Hb

aHa
b

)
. (3.12)

Here, α is a positive constant which provides appropriate physical units, and [ua, xa, ya, za]
is an orthonormal tetrad. The quantities Eab, and Hab are the electric and magnetic parts
of the Weyl tensor Cabcd respectively. For the mathematical computations, the complex
null tetrad is defined as the following:

ma = 1√
2

(xa − iya) , la = 1√
2

(ua − za) , and ka = 1√
2

(ua + za) , (3.13)

where xa, ya and za are spacelike unit vectors, which constitute an orthonormal basis
together with ua. Using these, the entire metric can be rewritten in terms of these
tetrads: gab = 2m(am̄b) − 2k(alb), with la and ka being aligned with the principal null
directions. Therefore in this scheme of the free gravitational field [106], the effective
gravitational energy density can be written as:

8πρgrav = 2α

√
2w

3 , |Ψ2| =
√

2w

3 , (3.14)

with ρgrav ≥ 0. Here Ψ2 is the nonzero Weyl scalar component for Petrov type D
spacetimes. In the CET paper [106], the authors by analogy with the off-equilibrium
Gibbs equation, obtained the following expression for the entropy production in the
presence of perfect fluid matter field:

Tgravṡgrav = (ρgravv)· = −vσab

[
Πab

grav + 4π(ρ + p)
3α|Ψ2|

Eab

]
. (3.15)
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The independently defined local gravitational temperature at any point in spacetime
was given by the following expression:

Tgrav = |ua;bl
akb|

π
= |u̇aza + H + σabz

azb|
2π

, (3.16)

where za is a spacelike unit vector aligned with the Weyl principal tetrad, σab is the shear
tensor, u̇a = ub∇aub is the 4−acceleration, H = Θ

3 is the isotropic Hubble rate, and Θ ≡
∇̃cu

c = hb
c∇bu

c is the isotropic expansion scalar. As the above described variables depend
on all the four spacetime variables, naturally the gravitational entropy one-form can be
expressed as: dsgrav = ∂0(sgrav)dx0 + ∂i(sgrav)dxi. Consequently the Gibbs one-form
becomes a system of four partial differential equations where Tgrav acts an integrating
factor, and these systems need not be integrable. On careful inspection it is evident that
one needs to know about the physics of the microscopic theory of gravity to know the
temperature of gravitational fields, and therefore, in [106] the authors considered the
results of BH thermodynamics and quantum field theory in curved spacetime to propose
the definition of Tgrav. This definitionis not limited only to horizons, but is local, and
can reproduce the Hawking temperature, the Unruh temperature and the temperature
of de Sitter spacetime in the appropriate limits. Therefore, although the Tgrav provided
in [106] is an extra ingredient appearing along with their main proposal, and it is always
possible to define a new temperature, still the concept of Tgrav is rather well-motivated.

In the original CET paper [106], the authors were interested in the gravitational
entropy production, considering only the time derivative ṡgrav = ua∂asgrav, along the
worldlines of comoving observers. The full integrability of the Gibbs one-form have been
discussed explicitly by Sussman and Larena in [112, 113]. The spherically symmetric
static WHs that we have considered here, are the equilibrium cases where the condition
ṡgrav = ua∂asgrav = 0 holds strictly, and therefore, for the one-form coordinate basis
[dt, dr, dθ, dϕ], the gravitational entropy one-form becomes

dsgrav = ∂r(sgrav)dr, (3.17)

and the Gibbs one-form reduces to a single ordinary differential equation:

Tgrav∂r[sgrav] = ∂r[ρgrav], (3.18)

which leads to the rate of variation of the local piecewise gravitational entropy along the
radial direction as:

∂rsgrav(r) = ρgrav(r)v(r)
Tgrav(r) . (3.19)

Finally, the variation of the local piecewise gravitational entropy of static spherically
symmetric spacetimes sgrav(r) can be determined as:

sgrav(r) =
∫ ρgrav(r)v(r)

Tgrav(r) dr, (3.20)
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where the volume element is represented by v(r) = 4π
√

h, where h is the determinant
of the projector tensor hab. It may be further noted that the CET proposal is applicable
only to Einstein’s gravity. If we try to apply this proposal to different kinds of spacetimes,
it is found that the CET proposal can provide unique gravitational entropy only for the
Petrov type D and type N spacetimes. The algebraic decomposition of the Bel-Robinson
tensor into a second order effective energy momentum tensor can be done for other
Petrov type spacetimes also, but it is only in the Petrov type D and N spacetimes that
the second order effective energy momentum tensor is unique [158].

3.3. Analysis of gravitational entropy
In this section we will study some important traversable wormholes extending our pre-
vious works [153, 154]. In each case we will be applying the two separate proposals
of gravitational entropy if possible, and discuss their implications and limitations. We
will also compare the corresponding results wherever possible. We want to emphasize
here that the energy momentum tensor for the matter source supporting the WHs has
no effect on the effective energy momentum tensor, T ab, for the free gravitational field
given by CET and described in (3.11). It is clear from this equation that the geometric
fluid for T ab is not associated to the matter source (T ab) of WH.

3.3.1. Ellis wormhole
The Ellis WH obtained in 1973 [115] is the first example of a non-singular wormhole
solution. This is an exact solution of the Einstein-phantom scalar system with a scalar
field having negative kinetic energy. Ellis used the negative kinetic energy term (‘phan-
tom’) in the scalar field action to achieve the violation of energy condition, which is
necessary to support the wormhole. The metric of this wormhole is given by [115]:

ds2 = −dt2 + dr2 + (r2 + a2)(dθ2 + sin2θdϕ2), (3.21)

where r = a is the throat radius of the wormhole. The radial coordinate r runs from
−∞ to +∞ to cover the entire wormhole geometry, where r = 0 corresponds to the
throat of the wormhole. This metric has no singularity, and the throat connects the
two separate regions r → +∞ and r → −∞. The stress-energy tensor for this WH is:
−T tt = −T rr = T θθ = T ϕϕ = a2

(a2 + r2)2 , where the energy density is negative, which is
only possible with exotic phantom matter.

1. Weyl scalar proposal: The spatial section of the Ellis wormhole is given by the
following:

hij = diag
[
1, (r2 + a2), (r2 + a2)sin2θ

]
. (3.22)

The determinant of the above mentioned matrix is given by h: h = (r2 +a2)2sin2θ.
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The Weyl curvature scalar W and the Kretschmann curvature scalar K are ob-
tained in the form:

W = 16
3

a4

(a2 + r2)4 , K = 12a4

(a2 + r2)4 .

Therefore the ratio of the two curvature scalars is given by: P 2
1 = W

K
= 4

9 .

(a) (b)

Figure 3.1.: Embedding diagram of the Ellis wormhole where we have taken a = 2.

The gravitational entropy density is obtained as

s = ks|∇.Ψ| = ks

∣∣∣∣∣ 1√
h

∂

∂r
(
√

h
P√
hrr

)
∣∣∣∣∣ = 4ks

3

∣∣∣∣∣ r

(r2 + a2)

∣∣∣∣∣ . (3.23)

Fig.3.1 illustrates the embedding diagram of the Ellis wormhole for the values of
parameters as mentioned.
In Fig.3.2(a) the gravitational entropy density derived in the equation (3.23) is
depicted for different throat lengths. The maxima of gravitational entropy density
lies at the wormhole throat radius, and the maxima of the entropy density is shift-
ing to a lower value with the increasing throat radius. Further, the gravitational
entropy density is always zero at the throat region of the wormhole as there is no
central singularity in the metric of the Ellis wormhole. The finiteness of the grav-
itational entropy density also conforms to the traversability of this wormhole. It
maybe noted that Romero et al. [109] evaluated the gravitational entropy density
of another kind of traversable wormhole with exotic matter using the Weyl scalar
proposal. They have also found that the gravitational entropy density is always
zero at the throat of the wormhole irrespective of the value of the throat radius.
The discussion of Fig.3.2(b) is given later.
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(a) (b)

Figure 3.2.: (a) Variation of GE density s of Ellis wormhole with r for various throat

lengths a. (b) Rate of variation of CET gravitational entropy along the

radial direction ∂rs
IF
grav ≡ sr for different values of a, where k = 1, and for

different values of k where a = 1, respectively.

2. CET proposal: Next we examine the CET proposal of gravitational entropy for
the traversable Ellis wormhole. The gravitational epoch function w in this case is

w = Tttttu
tututut = a4

6(a2 + r2)4 . (3.24)

We have calculated all the Weyl scalars and we find that the only nonzero compo-
nent is Ψ2 given by:

Ψ2 = −1
3

a2

(a2 + r2)2 . (3.25)

Therefore the identity |Ψ2| =
√

2w

3 is satisfied in this Petrov type D spacetime.
The energy density of the gravitational field is

ρgrav = α

4π
|Ψ2| = α

12π

∣∣∣∣∣ a2

(a2 + r2)2

∣∣∣∣∣ . (3.26)
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As u̇a = 0, Θ = 0, σab = 0 and ωab = 0, the gravitational temperature provided by
CET in [106] emerges as

Tgrav = 0. (3.27)
The vanishing gravitational temperature is problematic because the GE will blow
up in that case. As the CET GE is frame dependent, and we have considered
observers only along a static frame, it would be very interesting to check for ob-
servers whose 4−velocity is tangential to the worldlines of observers traversing the
WH, to see whether it solves the problem of vanishing Tgrav. Let us consider the
radial timelike geodesics on the equatorial plane, and with the condition a2 > 0,
these geodesics can traverse the WH from one side to the other. Consequently the
4−velocity in such a frame turns out to be ua = (

√
2, −1, 0, 0). For the sake of

clarity, we state our orthonormal basis [ua, ra, θa, ϕa] in the expressions below:

ua = (
√

2, −1, 0, 0), θa =
(

0, 0,
1√
2

1√
r2 + a2

,
1√

2sinθ

1√
r2 + a2

)
,

ra = (1, −
√

2, 0, 0), ϕa =
(

0, 0,
1√
2

1√
r2 + a2

, − 1√
2sinθ

1√
r2 + a2

)
. (3.28)

Here ua is a timelike unit vector, and the rest are spacelike unit vectors orthogonal
to ua and to each other. Consequently, we can form the complex null tetrad accord-
ing to (3.13). We obtain the gravitational energy density as ρgrav = α

12π

a2

(a2 + r2)2 .

Using the above mentioned 4−velocity we found the congruence properties, which
are: the 4−acceleration u̇a = 0, the expansion scalar Θ(r) = −2r

a2 + r2 , and the
stress tensor σab is given below:

σ00 = 2r

3(a2 + r2) , σ01 = σ10 = 2r
√

2
3(a2 + r2) ,

σ11 = 4r

3(a2 + r2) , σ22 = −r

3 , σ33 = −r sin2 θ

3 . (3.29)

Therefore, the quantities required for the determination of Tgrav becomes: σabr
arb =

2r

3(a2 + r2) , and the isotropic Hubble rate is H = Θ
3 = − 2r

3(a2 + r2) . Once again

this yields Tgrav = 0. This means that the ratio blows up, i.e., ρgrav

Tgrav
→ ∞, if we

consider the Tgrav proposed by CET. Here the free gravitational energy density
is finite locally but the gravitational temperature according to the CET proposal
for the free gravitational field is vanishing, indicating the divergent local piece-
wise gravitational entropy. However, physically this is impossible. Although the
CET proposal is independent of the definition of Tgrav, at most we can say that
the definition of temperature given in the CET paper is not suitable in this case.
Since the CET definition of Tgrav is completely ad hoc, and as Tgrav is simply an
integrating factor of the Gibbs one-form, we can choose an ad hoc expression of
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Tgrav in order to integrate the expression for GE. Now, if we want a finite entropy
density at the throat and a non negative function of r, then let us define the sim-
plest integrating factor as T IF

grav ∼ 1
k2 + r2 , where k is a constant. It is to be noted

that this temperature is for pure mathematical convenience and has no physical
standing, whereas the temperature Tgrav given by CET was very robust since it
could reproduce the Hawking-Bekenstein temperature for BH. This temperature
function T IF

grav actually replicates the CET definition far away from the wormhole,
at large values of “r”, whereas near the wormhole it gives a finite non zero value.
We will restrict our calculations to the equatorial plane (sin θ = 1). The function
T IF

grav gives us the rate of variation of GE along the radial direction as

∂rs
IF
grav = ρgravv

T IF
grav

∼
∣∣∣∣∣α3 a2(k2 + r2)

(a2 + r2)

∣∣∣∣∣. (3.30)

In Fig.3.2(b) the rate of radial variation of CET GE, ∂rs
IF
grav, is shown as a function

of r. Unlike the Weyl scalar proposal, here the entropy density is not always zero
at the throat. The local piecewise CET gravitational entropy can be obtained by
integrating over the radial coordinate as the following:

sIF
grav(r) =

∫ r

0

ρgravv

T IF
grav

dr ∼
∣∣∣∣∣αa

3

(
(a2 − k2) arctan

(
r

a

)
− ar

) ∣∣∣∣∣. (3.31)

Both the radial rate of variation of CET gravitational entropy, ∂rs
IF
grav, and the

local piecewise GE, SIF
grav(r), vanish at the throat for k = 0, and for k ̸= 0 the rate

of variation of GE along the radial direction at the throat depends on the values
of a and k.

3.3.2. Darmour-Solodukhin wormhole
The Darmour-Solodukhin wormhole [131] is a good candidate for cosmological observa-
tions, the “black hole foils”, i.e. these wormholes are objects that mimic some aspects of
black holes, while lacking some of their defining features, such as the event horizon. This
is a modification of the well known Schwarzschild metric in order to make it horizonless.
The stress energy tensor and the information for the source required to maintain this
WH are discussed in [132], where the authors used the Schwinger-DeWitt expansion to
derive an approximated stress-energy tensor of the quantized massive scalar, spinor and
vector field for the DS WH. They found that for the scalar field there is a region in
the parameter space for which the stress-energy tensor has the desired properties. The
stress energy of the massive scalar field with a general curvature coupling ξ is:

T b
a = 1

96π2µ2m6

(
1 − 2

x
− λ2

)−6 7∑
k=0

β(k)b
a

1
xk+8 . (3.32)

Here µ is the mass of the field with x = r/m. The coefficients β(k)b
a depend parametrically

on λ and ξ. Considering this stress-energy tensor, they found that there is a region in
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the (λ, ξ)−plane in which the stress-energy tensor has the form required to support the
wormhole. The exact form of the stress-energy tensor of quantized massive fields are
complicated and can be found in the supplementary of the same paper.

The Darmour-Solodukhin (DS) wormhole metric is

ds2 = −(f(r) + λ2)dt2 + dr2

f(r) + r2(dθ2 + sin2 θdϕ2), (3.33)

where f(r) = (1 − 2m
r

), and λ is a dimensionless parameter. Here, if λ = 0, then the
Darmour-Solodukhin wormhole metric reduces to the usual Schwarzschild black hole
metric having an event horizon at r = 2m. But for λ ̸= 0, however small, there is no
event horizon. Instead this Lorentzian wormhole have a throat at r = 2m connecting
two isometric and asymtotically flat regions 2m ≤ r ≤ ∞.

1. Weyl scalar proposal: In order to begin our analysis we first need to identify
the spatial section of the Darmour-Solodukhin wormhole metric, which is given by
the following expression:

hij = diag
(

1
(1 − 2m

r
) , r2, r2 sin2 θ

)
.

We also need to compute the ratio (P 2
1 ), which is given by the expression (3.34):

P 2
1 = CabcdCabcd

RabcdRabcd

= 1
3
(
3 λ4r2 − 19 λ2mr + 9 λ2r2 + 24 m2 − 24 mr + 6 r2

)2
×(

6 λ8r4 − 48 λ6mr3 + 24 λ6r4 + 177 λ4m2r2 − 172 λ4mr3 + 42 λ4r4 − 304 λ2m3r

+ 448 λ2m2r2 − 220 λ2mr3 + 36 λ2r4 + 192 m4 − 384 m3r + 288 m2r2 − 96 mr3

+ 12 r4
)−1

. (3.34)

The ratio of curvature scalars computed in (3.34) is depicted in Fig.3.3. We find
that as we approach the throat region at r = 2, the contribution of the matter
dominates over the Weyl, resulting in a dip of the value near that region, which
is expected as the mass is located in that region. Using the proposal of Rudjord
et al., we arrive at the expression of GE density in (3.35) which is depicted in
Fig.3.4(a). We note that the gravitational entropy density is peaking around the
throat of the wormhole. Further, as the value of λ increases, the peak of the
gravitational entropy density decreases, with the highest value in the case of the
black hole itself.
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Figure 3.3.: Variation of the ratio of curvature scalars P 2
1 as a function of r, λ for

Darmour-Solodukhin WH.

s =ks|∇.Ψ| = 3072ks

√
3
∣∣∣∣∣∣
√

−r + 2 m

r3/2

λ12r6

256 − 79 r5λ10

1536

(
m − 42 r

79

)
+

(
329 m2r4

1024 − 165 mr5

512 + 21 r6

256

)
λ8 − 583 r3λ6

512
(
m3 − 5147 m2r

3498 + 423 mr2

583

− 70 r3

583
)

+ 41 r2 (−r/2 + m) λ4

18

(
m3 − 3837 m2r

2624 + 3747 mr2

5248 − 153 r3

1312

)
−

19 r (−r/2 + m)4 λ2

8

(
m − 9 r

19

)
+ (−r/2 + m)6

6 λ8r4 +
(

− 48 mr3

+ 24 r4
)
λ6 +

(
177 m2r2 − 172 mr3 + 42 r4

)
λ4 − 304 r

(
−r

2 + m
)2

(
m − 9 r

19

)
λ2 + 192

(
−r

2 + m
)4
− 3

2
∣∣∣∣∣∣. (3.35)

If we put λ → 0 in (3.35), then the entire expression for s reduces to that of the
Schwarzschild black hole, i.e. s = 2ks

r

∣∣∣∣√1 − 2m
r

∣∣∣∣, which matches with the result in
[107]. This is depicted in Fig.3.4(a), validating the expression we have obtained
here. We note that the GE density for the Schwarzschild black hole has a maxima
at r = 3

2 × (2m) and goes to zero at the event horizon at r = 2m. We have taken
m = 1 for our plots.

2. CET proposal: Let us now consider the CET proposal of gravitational entropy.
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We have chosen the four vectors to be aligned with the principal null tetrads, and
computed the Weyl curvature scalar Ψ2 as follows:

Ψ2 = −4 m

(−λ2r + 2 m − r)2 r3

((
λ4

8 + 3λ2

8 + 1
4

)
r2 + m

(
−19 λ2

24 − 1
)

r + m2
)

.

(3.36)
Now using the definition of gravitational energy density ρgrav and the expression
of Ψ2, we have obtained the following expression (3.37):

ρgrav = α

4π
|Ψ2| = α

24π

∣∣∣∣∣m (3 λ4r2 − 19 λ2mr + 9 λ2r2 + 24 m2 − 24 mr + 6 r2)
(λ2r − 2 m + r)2 r3

∣∣∣∣∣.
(3.37)

Similarly using the definition of gravitational temperature Tgrav we obtain (3.38):

Tgrav = 1
2π

∣∣∣∣∣ m
√

r − 2m

(r − 2m + λ2r)r3/2

∣∣∣∣∣ . (3.38)

Here we chose the equatorial plane for our calculations. Finally, we obtain the
expression for the rate of variation of CET gravitational entropy along the radial
coordinate given in (3.39) (depicted in Fig.3.4(b)):

∂rsgrav = απr

3

∣∣∣∣∣3 λ4r2 − 19 λ2mr + 9 λ2r2 + 24 m2 − 24 mr + 6 r2

(r − 2 m) (λ2r − 2 m + r)

∣∣∣∣∣ . (3.39)

The variation of the local piecewise gravitational entropy of the DS wormhole is
obtained as:

sgrav(r) = 4π

(λ2 + 1)2 × signum
(

(3 λ4 + 9 λ2 + 6) r2 + (−19 λ2 − 24) mr + 24 m2

(−r + 2 m) (−λ2r + 2 m − r)

)
(

m2

6 ln
(
λ2r − 2m + r

)
+
(

m2
(
λ2 + 1

)(
λ2 − 1

6

)
ln (r − 2m)

+ r

2

((
m + r

4

)
λ4 +

(5
6m + 3

4r
)

λ2 + r

2

)) (
λ2 + 1

))∣∣∣∣∣
r

2m+ϵ

, (3.40)

where ϵ > 0 is a very small quantity as the above expression is not valid for r = 2m.

We find that in this case, the rate of variation of gravitational entropy along the radial
direction, ∂rsgrav, decreases as the throat region is approached. Over here, as the value
of λ increases, the magnitude goes towards a higher value. We also observe that the rate
of variation of CET GE goes towards zero near the throat region for nonzero λ.

3.3.3. Exponential metric wormhole
Next we will analyze the exponential metric wormhole. The exponential or Papapetrou
metric represents the counterpart to the Schwarzschild black hole with antiscalar back-
ground fields, and can be considered as a special case of the Fisher–(Newman–Janis–Winicour)
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(a) (b)

Figure 3.4.: (a) Variation of GE density s of DS wormhole with r for various parameter

strength λ using the Rudjord proposal. (b) Rate of variation of CET gravi-

tational entropy ∂rsgrav ≡ sr of DS wormhole with r for various parameter

strength λ using the CET proposal.

–Wyman–Ellis–Bronnikov solutions for a massless scalar field coupled to gravity. It is
related to the Morris–Thorne traversable wormhole. A detailed description of the antis-
calar source field can be found in [129, 130], where the authors analysed the origin of the
metric within a wide class of scalar and antiscalar solutions of the Einstein equations pa-
rameterized by scalar charge. The exponential metric wormhole in isotropic coordinates
is given by :

ds2 = −e
−2m

r dt2 + e
2m
r [dr2 + r2(dθ2 + sin2 θdϕ2)], (3.41)

with the Einstein tensor Ga
b = m2e

−2m

r

r4 diag {1, −1, 1, 1}a
b, and the antiscalar source

field described by: T SF
ab = 1

4π

(
ϕaϕb − 1

2gabϕcϕ
c
)
. The energy momentum tensor is

quadratic in ϕa = ∇aϕ = ϕ,a, with the field equation Gab = −8πT SF
ab . The Lagrangian

for the antiscalar field is given by L = 1
16π

(R + 2ϕaϕa). Recently, Boonserm et.al. [159]
demonstrated that this metric represents a traversable wormhole. Here m is the mass of
the wormhole. The throat of the WH is located at r = m. This WH does not have any
horizon because gtt is nonzero for all non negative values of r ∈ (0, +∞). The region
r < m represents the other universe, and the curvature invariants are nonzero at the
throat [149] while they go to zero asymptotically as r goes to infinity (as it should), in
order to connect two asymptotically flat regions. In [160] the authors have studied the
geodesics using the Jacobi metric approach.

1. Weyl scalar proposal: For the exponential metric wormhole we find that the
spatial section is the following:

hij = e
2m
r diag(1, r2, r2 sin2 θ), (3.42)
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where the determinant of hij is given by: h = e
6m
r r4 sin2 θ. The ratio of the

curvature scalars is given in (3.43):

P 2
1 = 4

3
(2m − 3r)2

(7m2 − 16mr + 12r2) . (3.43)

From this expression it is clear this ratio becomes zero at r = 2m
3 . For the sake

of clarity, the variation of P 2
1 is shown in FIG.3.5 for different values of mass

parameter m. From the figure it is clear that P 2
1 becomes zero at specific points

as mentioned above, and there is also a dip in the values near the throat of the
wormhole where the mass is located, implying a more dominant contribution from
the Riemann tensor than the Weyl component. In this case we will use the following

Figure 3.5.: Variation of the ratio of curvature scalars P 2
1 as a function of r for different

m in the case of exponential metric wormhole.

definition of gravitational entropy density:

s = ks|∇.Ψ| = ks

∣∣∣∣∣ 1√
h

∂

∂r
(
√

h
P1√
hrr

)
∣∣∣∣∣ . (3.44)

The above definition of gravitational entropy density yields the result in (3.45).

s =2ks

3

√
3

r2 (7 m2 − 16 mr + 12 r2)2 ×∣∣∣∣∣∣(56 m5 − 352 m4r + 912 m3r2 − 1197 m2r3 + 792 mr4 − 216 r5)√
(2 m−3 r)2

7 m2−16 mr+12 r2

∣∣∣∣∣∣
(
em

r

)−1
.

(3.45)

In Fig.3.6(a) we have shown the variation of gravitational entropy density using
(3.45) with different wormhole throat values. We find that the entropy density
increases and becomes maximum near the throat and decays to zero as we move
away from the central throat region. As the mass increases, so does the throat ra-
dius and the height of the maximum of the gravitational entropy density decreases
with it, which is expected. Also the entropy density goes to zero on the other side
of the throat as it approaches r = 0.
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(a) (b)

Figure 3.6.: (a)Variation of GE density s of exponential metric wormhole with r for var-

ious throat lengths r = m using Rudjord proposal. (b) Rate of variation of

gravitational entropy along the radial direction ∂rsgrav ≡ sr of exponential

metric wormhole with r for various throat lengths r = m using CET pro-

posal.

2. CET proposal: Next we consider the CET gravitational entropy proposal. At
first the gravitational epoch function w is calculated:

w = Tttttu
tututut = m2e

−4m
r (2m − 3r)2

6r8 . (3.46)

Once again all the Weyl scalars are calculated independently and Ψ2 turns out to
be the only nonzero component which is given below:

Ψ2 = me
−2m

r (2m − 3r)
3r4 . (3.47)

Here also the identity |Ψ2| =
√

2w

3 is satisfied as this is a Petrov type D spacetime.
The gravitational energy density ρgrav is given by

ρgrav = α

4π
|Ψ2| = α

12π

∣∣∣∣∣∣me
−2m

r (2m − 3r)
r4

∣∣∣∣∣∣ . (3.48)

As u̇r = m

r2 , Θ = 0, σab = 0 and ωab = 0, we can calculate the gravitational
temperature as

Tgrav = 1
2π

∣∣∣∣ m

r2e
m
r

∣∣∣∣ . (3.49)
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Once again we consider the equatorial plane, and compute the rate of variation of
GE along the radial direction to get the following expression:

∂rsgrav = ρgravv

Tgrav

= 2απ

3
∣∣∣e 2m

r (2m − 3r)
∣∣∣ . (3.50)

Finally, we obtain the piecewise local gravitational entropy of the exponential
metric wormhole as the following:

sgrav(r) =
∫ r

0

ρgravv

Tgrav

dr = 2απ

3


∣∣∣−3

2 e 2m
r r2 − e 2m

r rm − 2 Ei
(
1, −2m

r

)
m2
∣∣∣ ; r < 2m

3 ,

undefined; r = 2m
3 ,∣∣∣32 e 2m

r r2 + e 2m
r rm + 2 Ei

(
1, −2m

r

)
m2
∣∣∣ ; 2m

3 < r.

(3.51)
where Ei(a, z) are exponential integrals. In Fig.3.6(b), the rate of variation of
gravitational entropy along the radial direction is plotted using (3.50) for different
wormhole throat values. The zeroes are the points where the Weyl curvature
becomes zero (as also in (3.43)), i.e. at r = 2m

3 . Therefore, as m increases, the
throat radius increases, and the zero of the rate of radial variation of GE in the
CET convention shifts toward positive infinity. As the distance increases from the
central throat, i.e., at r = m to the other side, it rises sharply from zero. This is
also evident from equation (3.50). A similar behaviour can also be found for sgrav:
it decreases monotonically as we approach the throat, crosses the throat smoothly,
and then sharply increases on the other side.

3.3.4. Traversable NUT wormhole
The solution of the Einstein-Maxwell system of equations found by Brill [133] in 1964 is
given by

ds2 = −f(dt − 2n(cosθ + C)dϕ)2 + f−1dr2 + (r2 + n2)(dθ2 + sin2θdϕ2). (3.52)

The Brill solution with no horizon, which connects two asymptotically locally flat regions,
is the wormhole of our interest [144]. The unknown parameters are as follows:

f = (r − m)2 + b2

r2 + n2 , and b2 = q2 + p2 − m2 − n2 = e2 − m2 − n2,

where n is the NUT parameter, m is the mass parameter, q and p are the electric
and magnetic charges respectively. For the sake of simplicity we will combine these
two charges and call them as e2 = q2 + p2. For b2 < 0 it has two horizons, just as
the Reissner-Nordström (RN) solution. For b2 = 0, it has, just as the extreme RN
solution, a double horizon. However, for b2 > 0, contrary to the RN solution, it is not
singular, but has the (Lorentzian) wormhole topology, the coordinate r varying along
the whole real axis, with two asymptotic regions r = ±∞. As r(> 0) decreases, the r =
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constant 2-spheres shrink until a minimal sphere of area 4πn2 (the wormhole neck) is
reached for r = 0, and then expand as r(< 0) continues to decrease. The determinant
of the metric (3.52) for the above mentioned traversable NUT wormhole is given by
g = − (sin (θ))2 (n4 + 2 n2r2 + r4) .
Subsequently the Weyl scalar is given by the expression:

W = − 48
(n2 + r2)6

(
− n4 + (m − 3 r) n3 +

(
−3 mr + 3 r2 + e2

)
n2 +

(
− 3 mr2 + r3+

2 re2

)
n + r2 (mr − e2)

)(
n4 + (m − 3 r) n3 +

(
3 mr − 3 r2 − e2

)
n2 +

(
− 3 mr2+

r3 + 2 re2

)
n − mr3 + e2r

2
)

. (3.53)

1. Weyl scalar proposal: To evaluate the gravitational entropy density of this
spacetime we need the Kretschmann curvature scalar for this metric, which is the
following:

K = − 8
(n2 + r2)6 Σ. (3.54)

The square root of the ratio of the Weyl scalar and the Kretschmann curvature
scalar gives us the magnitude of the vector Ψ, since P 2

1 = W

K
. Thus P1 is obtained

in the form

P1 =
[

− n4 + (m − 3 r) n3 +
(
−3 mr + 3 r2 + e2

)
n2 +

(
−3 mr2 + r3 + 2 re2

)
n

+ r2 (mr − e2)
]1/2

×
√

6
[
n4 + (m − 3 r) n3 +

(
3 mr − 3 r2 − e2

)
n2+

(
−3 mr2 + r3 + 2 re2

)
n − mr3 + e2r

2
]1/2

× Σ− 1
2 , (3.55)

where Σ is given by the following expression:

Σ =
[
6 m2(n6 − 15 n4r2 + 15 n2r4 − r6) − 24 m(3n6r − 10n4r3 + 3n2r5)−

6 n2(n6 − 15 n4r2 + 15 n2r4 − r6) + e2(60 mn4r − 120 mn2r3 + 12 mr5+
12 n6 − 120 n4r2 + 60 n2r4 − 7 n4e2 + 34 n2r2e2 − 7 r4e2)

]
. (3.56)

In FIG. 3.7 and FIG. 3.8, the gravitational entropy density for traversable NUT
wormhole have been illustrated using the definition involving P1. To generate FIG.
3.7, we have considered only the radial component in the definition of gravitational
entropy density, i.e., using (3.8), whereas in FIG. 3.8 both the radial and angular
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(a) (b)

Figure 3.7.: Variation of GE density s of traversable NUT wormhole with r for different

parameters. Here we have only considered the radial contribution as in (3.8).

In this case the expression of GE density have been calculated using P1.

contributions have been considered using (3.9), as the metric has a nonzero gtϕ

component.
In FIG. 3.7(a), the GE density have been examined by varying the angular orien-
tation θ. In this case we have taken m = 0.2, n = 0.3 and e2 = 1. In FIG. 3.7(b)
the variation of the GE density with the parameter e2 (charge squared) is shown
for the same values of the parameters, i.e. m = 0.3, n = 0.3 and with θ = π

4 .
FIG. 3.8(a) is drawn by assuming m = 0.2, n = 0.3 and e2 = 1 to show the
variation of the gravitational entropy density with angular orientation θ. In the
second case, i.e. in FIG. 3.8(b), the effect of charge has been shown, where we
have taken m = 0.3, n = 0.3 and θ = π

4 as our fixed parameters. From both
FIG. 3.7 and FIG. 3.8, which are drawn by considering the expression for P1, it
is evident that there are too many discontinuities. This means that P1 does not
serve as a good measure of gravitational entropy density in this case. Therefore we
considered the alternative proposal with P2 = CabcdCabcd to calculate the GE. Here
we will not quote the exact expressions for the GE density since these are extremely
complicated and lengthy, but an idea regarding the nature of these expressions can
be gathered if one refers to our work on accelerating black holes [153].
FIG. 3.9 and FIG. 3.10 shows the investigation of the NUT wormhole using the
expression (3.10) for P2 in the definition of gravitational entropy density mentioned
in (3.8) and (3.9) respectively.
FIG. 3.9(a) shows us the variation of GE density with angular orientation θ (for
fixed parameters m = 0.2, n = 0.3 and e2 = 1) and the variation with NUT
parameter while having fixed parameters as m = 0.3, e2 = 1 and θ = π

4 . Similarly
in FIG. 3.9(b), the top figure shows the variation of GE density with mass for
n = 0.3, e2 = 1 and θ = π

4 . The bottom figure of FIG. 3.9(b) gives us the effect of
charge on the GE density for a traversable NUT wormhole with m = 0.3, n = 0.3
and θ = π

4 . In FIG. 3.9, all the calculations are done by considering only the radial
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(a) (b)

Figure 3.8.: Variation of GE density s of traversable NUT wormhole with r for different

parameters. Here we have considered both the radial and angular contribu-

tion as in (3.9). Here also the expression of GE density is being calculated

using P1.

contribution in the definition of the GE density. In FIG. 3.10 all the figures are
drawn by considering both the radial and angular components, which indicates
small differences between the two cases. Parameters m = 0.3, n = 0.3 and e2 = 1
are fixed in the top figure of FIG. 3.10(a), which shows the variation with θ. In
the bottom figure of the same column, the variation with NUT parameter is shown
with parameters fixed as m = 0.3, e2 = 1 and θ = π

4 . Finally in the column of FIG.
3.10(b), the variation with mass and charge are shown for n = 0.3, e2 = 1, θ = π

4
and m = 0.3, n = 0.3, θ = π

4 as the fixed parameters for these cases respectively.
In all the above cases we note that the GE density rises near the throat region
and vanishes in the asymptotic limit away from the wormhole. As the GE density
function is a polynomial in r (in fact the curvature scalars themselves are such),
for our chosen parameters it has at least two real roots. That is why we encounter
two zeroes in the GE density function, meaning that the GE density is localized
in two adjacent regions and the location of these regions depend entirely on the
parameters of the wormhole, although maximum entropy occurs near the throat
region only. From the above analysis we can clearly state that the Weyl scalar
proposal involving P1 is not suitable for the analysis of this wormhole, but if we
take P2 into consideration, then we can obtain a viable measure of GE density.

2. CET proposal: This spacetime is not strictly of Petrov type D, and hence the
CET proposal cannot provide us a unique form of sgrav for this wormhole, as
mentioned in the previous section when we provided an overview of the CET
proposal.

• NOTE: In addition to the above mentioned traversable wormholes we have also an-
alyzed and discussed two more types of traversable wormholes, namely, the AdS worm-
hole, and the very recently proposed wormhole ansatz by Juan Maldacena. Details of
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(a) (b)

Figure 3.9.: Variation of GE density s of traversable NUT wormhole with r for different

parameters. Here we have only considered the radial contribution as in (3.8).

The definition of GE density is calculated using P2.

these two supplementary cases are presented in the Appendix section of this paper.

3.4. Tolman law in wormhole spacetimes
The Tolman law describes the spatial dependence of locally measured temperature dis-
tribution in a gravitational field [161]. Of the four WHs that we considered till now,
three are static spherically symmetric cases and they are in equilibrium. To expand our
study on these systems we apply the famous Tolman law given by Richard Tolman in
1930 [162], which says that thermal equilibrium can exist within a temperature gradient
provided that a gravitational field is present. Tolman assumed a sphere of fluid with the
line element in the form

ds2 = −eµ(dr2 + r2dθ2 + r2sin2θdϕ2) + eνdt2, (3.57)

where µ and ν are functions of r. This represents the geometry of perfect fluid having
spherical symmetry in full generality, and also the system is static, similar to the cases
that we considered. The Tolman law, i.e., the relation between gravitational potential
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(a) (b)

Figure 3.10.: Variation of GE density s of traversable NUT wormhole with r for different

parameters. Here we have considered both the radial and angular contri-

bution as in (3.9). The definition of GE density have been calculated using

P2.

and equilibrium temperature measured by a local observer in proper coordinates, T0, is
expressed as follows:

d lnT0

dr
= −1

2
dν

dr
. (3.58)

In other words, the Tolman law shows that thermodynamic equilibrium in general rela-
tivistic spacetimes requires a temperature gradient, and a 4-acceleration to stop free fall.
This law provides us with a way to compute temperature variation for a given stationary
spacetime along a 4-velocity parallel to a timelike Killing vector field. The extension of
this result was presented by R. C. Tolman and P. Ehrenfest in [163]. They argued that

T0
√

g00 = T̃ = const. (3.59)

i.e., the proper temperature measured by a local observer in thermal equilibrium de-
pends on the position as given in the relation (3.59), so that the product remains con-
stant throughout the system. The quantity T̃ remains constant for that system, and is
called the “Tolman temperature”. Let us now briefly examine the static WHs which we
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considered so far.

Ellis WH: Comparing the metric (3.21) of the Ellis WH with the general spherically
symmetric spacetime metric (3.57), and using the relations (3.58), (3.59) we get T0,
which is given below:

d lnT0

dr
= 0 ⇒ T0 = const. = T̃ . (3.60)

We find that the there is no gradient in local temperature. Here the 4-velocity of the
static frame is a geodesic field which gives a constant temperature from Tolman’s law.
Hence the system is in Tolman temperature throughout. Darmour-Solodukhin WH:
Next we consider the DS wormhole. The temperature measured by the local observer is
given by the expression (3.61):

1
T0

dT0

dr
= − m

r2(f(r) + λ2) ⇒ T0 = B√
f(r) + λ2

. (3.61)

Here B is an integration constant. We can also validate the result (3.59) and express
the local temperature in terms of Tolman temperature as given in (3.62):

T0
√

g00 = B = T̃ ⇒ T0 = T̃√
f(r) + λ2

. (3.62)

Here we have the option to find the T̃ . As this metric reduces to the Schwarzschild metric

for λ = 0, the limit T0(∞) = T̃√
1 + λ2

, reduces to Hawking-Bekenstein temperature for

λ = 0. Therefore, T̃ = TBH , and consequently T0 = TBH√
f(r) + λ2

gives us the local

temperature in terms of the Hawking-Bekenstein temperature (TBH). Similarly at the
throat, the temperature measured by the local observer is T0(2m) = TBH

λ
, which blows

up at the event horizon for the Schwarzschild BH.
Exponential metric WH: Finally we will discuss the exponential metric case. Like
the previous cases we calculate the temperature measured by the local observer and find
that

1
T0

dT0

dr
= −m

r2 ⇒ T0 = Ce
m
r . (3.63)

Here C is the integration constant and it is indeed the Tolman temperature. In (3.64)
we have expressed the local temperature in terms of the Tolman temperature:

T0
√

g00 = C = T̃ ⇒ T0 = T̃ e
m
r . (3.64)

In all the above three WH cases, we found that both Θ = 0 and σab = 0, resulting
in a gravitational temperature Tgrav = 1

2π
|u̇aza|, i.e., the gravitational temperature is

proportional to the acceleration. We recall the Tolman law to write dT

T
∼ −aldxl,
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and consequently infer about the relationship between T0 and Tgrav. For the Ellis WH,
the relationship becomes trivial, but for the other two WHs the relationship is non-
trivial. The relation between the two temperatures for the Darmour-Solodukhin WH

becomes: T0 = Tgrav

(
2πT̃

m

)
r2

√
r − 2m

, and for the exponential metric WH it is T0 =

Tgrav

(
2πT̃

m

)
r2e2m/r. It is clear that the two temperatures are somehow related to each

other as the gravitational temperature is proportional to the acceleration, whereas in
the Tolman case, the temperature gradient is proportional to the acceleration. For a
fixed r, if one temperature is known, then the another one can be computed from these
relations.

3.5. Summary
In this paper we have analyzed the gravitational entropy of traversable wormholes from
the perspective of two different proposals, and have tried to make a comparison between
the two proposals in terms of their applicability to the different wormhole geometries. We
considered a variety of traversable WHs in order to analyze thoroughly the behaviour of
GE in such cases, and determine whether the GE proposals considered by us can provide
us with a viable measure of GE. Indeed, we found that the GE proposals do give us a
consistent measure of GE in most of them.

First we adopted a phenomenological approach of determining the gravitational en-
tropy of traversable wormholes [107, 109]. Secondly, we have also checked the result of
applying the CET proposal [106] on traversable wormhole geometries of Petrov type D
(excepting one above and one in the Appendices). It is clear that although the CET
proposal is very successful in various astrophysical and cosmological cases, the definition
of temperature given by CET fails in the case of Ellis wormhole. In a more cosmolog-
ically significant case, i.e., traversable wormholes that mimic black holes, namely the
Darmour-Solodukin wormhole, we find that it possesses a viable gravitational entropy
for both the Weyl scalar proposal and the CET proposal, with some differences between
them.

Although both the Rudjord and the CET proposals were successful in the case of the
exponential metric wormhole, their behavior differed which was expected as the former
was a purely geometric proposal whereas the latter one is based on relativistic thermody-
namics. The Rudjord proposal is directly inspired from the fact that black hole entropy
is related to its geometry, but the CET proposal considers a much more local view of the
system. In the case of NUT wormholes, both the WHs were checked thoroughly using
the Rudjord method and additional changes were made according to [109] both in the
magnitude of Pi and in the additional vector component contributions. For the case of
the first NUT wormhole the definition of P1 is not suitable as it gives multiple discon-
tinuities at different r for different combination of parameters, and it did not improve
even after introducing the additional angular contribution of θ in the definition of the
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gravitational entropy density. In the appendix, the case for the traversable AdS worm-
hole, which is also a NUT wormhole, the P1 definition is not so bad as in the previous
one. The overall distribution of the gravitational entropy density changed significantly
by tilting in a direction if we introduce additional angular contribution, but for P2 the
behaviour is regular and it only changes shape because the angular component brings
in additional entropy into the system. Overall, for wormholes where gtϕ is nonzero, the
definition using P2 and both the vector directional components gives us a more robust
result. Below we are presenting our results in a systematic manner.

1. For the Ellis wormhole we got a well-behaved gravitational entropy density using
the Weyl scalar (Rudjord) proposal. However for the CET proposal, though we
have a non zero gravitational energy density, but the gravitational temperature
becomes zero thereby making it impossible to calculate the GE. As the definition of
the gravitational temperature is ad hoc in the CET proposal, we have introduced
a new gravitational temperature to obtain the GE, which we found to be well-
behaved. The GE density in the Weyl scalar proposal is always vanishing at the
throat of the WH, and the radial variation rate for the CET GE is always finite
at the throat.

2. For the Darmour-Solodukhin wormhole, both the Weyl scalar proposal and the
CET proposal gives us a finite viable measure of gravitational entropy. The rate
of radial variation of GE and the local piecewise CET GE blows up at the throat
of the WH.

3. For the exponential metric wormhole too, we obtain viable measures of GE for both
the Weyl scalar and the CET proposals. In the Weyl scalar case, the GE density
peaks near the throat on the other side, and the CET rate of radial variation of GE
decreases and goes to zero, crossing the throat on the other side of the universe.

4. For the NUT wormhole we have computed the gravitational entropy density using
both the functions P1 and P2, taking into account both the radial and angular com-
ponents in the definition of s. We have shown explicitly that for these wormholes,
P2 gives us a viable measure of GE density. In this case, the CET proposal cannot
provide us with an unique expression for gravitational entropy as the metric is not
strictly of Petrov type D.

Of the four WHs considered above, three of them are static spherically symmetric cases
which are in equilibrium (i.e., the Ellis WH, the DS WH, and the exponential metric
WH). Therefore, we applied the famous Tolman law on these spacetimes, which says
that thermal equilibrium can exist within a temperature gradient if a gravitational field
is present there. We determined the Tolman temperature, and compared it to the
temperature of the gravitational field.

In the Appendix section we have included the analysis for the NUT wormhole in the
AdS spacetime as an additional case study. In this case, the Weyl proposal is applied for
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both the definitions of P1 and P2. In both these cases, the radial and the angular con-
tributions together gives us a complete picture, but as these metrics have a nonzero gtϕ

component, we want to make a point that P2 (with both the radial and angular contribu-
tions) gives us a far more complete and viable measure of gravitational entropy density.
Another traversable wormhole system proposed by Maldacena et al have been analyzed
to examine the gravitational entropy behavior of a traversable wormhole connecting two
black holes. In the Maldacena wormhole ansatz, both the Weyl proposal and the CET
proposal gives us zero gravitational entropy density, making the system nonphysical from
the thermodynamic perspective of gravitational entropy. For the sake of completeness
we have analyzed the extremal magnetic BHs of this system and showed that the relevant
functions, i.e., the gravitational energy density, the gravitational temperature, the ratio
of curvature scalars and the gravitational energy density to gravitational temperature
are continuous in the BH and WH junction. An important thing to note here is that
the gravitational entropy of the extremal magnetically charged black holes on a horizon
conforms with the Hawking-Bekenstein entropy of a black hole.

3.6. Concluding remarks
In this paper we have shown that the behavior of the gravitational entropy density
function of a system depends on the definition employed to compute its value, and
varies on a case by case basis. The two proposals which have been compared in this
article are the Weyl scalar proposal and the CET proposal. In some cases the pure
geometric method, i.e., the Weyl scalar proposal, provides us a good picture for the
ratio of curvature scalars, P1. In the case of wormholes which have a nonzero gtϕ term,
the pure Weyl square P2 seems to work better. It is also important to consider both the
radial and angular contributions in the definition of gravitational entropy. On the other
hand, the CET proposal provides an unique gravitational entropy only for the Petrov
type D and N spacetimes, but yields a far more nuanced result as it originates from the
relativistic thermodynamic considerations. The definition of gravitational temperature
proposed in the CET paper [106] does not give us an acceptable value in some of the
cases. It has already been mentioned that the CET proposal is not dependent on the
definition of temperature. Therefore a new definition of gravitational temperature can be
used to suit the purpose. An important point which one must remember in this context
is that, here we are considering only the wormhole geometry although the matter source
may differ in each case. As we are interested in the gravitational entropy, the nature of
matter source for the wormholes does not affect our analysis. Another important point
to be noted is that the CET proposal have been applied to wormhole systems for the first
time, and it is interesting to note its difference as compared to the Rudjord proposal.

We want to reiterate that by being frame-independent, the Weyl scalar proposals lost
their connection with the worldlines of physical fluids, and for this reason we cannot use
these proposals to examine the GE for an important class of observers that traverse a
WH, like the one we considered for the Ellis WH using the CET proposal. Since in a
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spherically symmetric static frame, the 4-velocity is aligned along the time axis, the only
straightforward interpretation of the expressions in our calculations (obtained for the
Weyl scalar proposals) is the variation of GE density along the radial direction, defined
in this frame. These calculations demonstrate a GE that yields a different constant for
each 2-sphere labelled by specific values of the coordinate r. Other criticisms on the
Weyl scalar proposals are available in [106].

We argue that for any traversable wormhole to exist, it must have a viable gravitational
entropy. So it is important to compare and study the proposals of gravitational entropy
in the context of traversable wormholes. Obviously, the CET proposal of gravitational
entropy is much more physically important, as it takes into account the restrictions im-
posed by relativistic thermodynamics. Not only is the interpretation of the gravitational
energy density established on a firm footing, but it also provides the freedom to choose
the gravitational temperature. For spacetimes not belonging to Petrov types D and
N, several algebraic decompositions of the Bel-Robinson tensor can be computed, and
the resulting expressions for CET gravitational entropy can also be studied. The CET
proposal depends on frames, and this frame-dependence is a very important property
that allows a link with thermodynamics. Though the Weyl scalar proposals does not
contain the thermodynamic aspects in it, they can provide a good viable measure of
GE for cases where the CET and other proposals may not. So we want to emphasize
that a given proposal might work for some spacetimes and not for others. However, all
spacetimes are not equally interesting or valid from a physical point of view. Therefore
the GE proposals which work for the most physically meaningful spacetimes are the
most interesting and relevant ones. From this view point, the connection to thermo-
dynamics and dependence on frames makes the CET proposal more physically viable.
Hence it appears that it will indeed be challenging to develop an universal proposal of
gravitational entropy.

Another important point to note here is that we are not checking whether the entropy
is increasing with time but whether these proposals can provide us with a viable expres-
sion of GE, as for the equilibrium states of the static cases the condition ua∂aSgrav = 0
holds. However, the thermodynamic study of equilibrium states for such self-gravitating
systems are very interesting, like the study of Antonov instability in relativistic systems
[167, 168] can important in these cases. Such studies of equilibrium states of these
self-gravitating systems may provide us with new information.

In conclusion, from our analysis and the corresponding plots, it appears that for the
traversable wormholes the GE density function will be well-defined if the definition of
the vector field Ψ is modified, either in the magnitude (P ), or in its direction (having
additional angular components). A similar feature was observed in our earlier work [153]
in the case of accelerating black holes. For the CET proposal, a new definition of gravi-
tational temperature can be used in order to avoid the appearance of null gravitational
temperature. All the static cases produced well defined unique GE in both the Weyl
scalar and the CET GE proposals, with minor differences, indicating that the concept of
gravitational entropy although new and contentious, does have some sense of theoretical
robustness.
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Data Availability
Data sharing is not applicable to this article as no datasets were generated or anal-
ysed during the current study. All figures were plotted with Maple software using the
theoretical equations.

Appendix: SOME ADDITIONAL NOTES
In this section we will briefly analyse the case of two more traversable wormholes. These
are additional case studies to support our conclusions, but less significant from the point
of view of the observed features.

Appendix-I: Traversable AdS wormhole
The following metric represents a stationary NUT wormhole with a negative cosmological
constant with a nonlinear sigma model as source, which was illustrated in [145]:

ds2 = dz2 + ρ2(z)
4

[
−Q2(dτ + cosθdϕ)2 + (dθ2 + sin2θdϕ2)

]
, (3.65)

where ρ(z) =
√

3(K − 8)
4|Λ|

cosh
(

|Λ|1/2
√

3
z

)
, and Q2 = K

4 . In addition to this, Λ < 0 if

the system has to satisfy the Einstein equations. Here Q is the NUT parameter and
must be an even integer for the solution to be single-valued [165]. The asymptotic NUT-
AdS regions with z → ±∞ are connected by this wormhole at the throat z = 0. This
spacetime has no curvature singularities and is locally regular, and is therefore an object
of our interest in this paper.

The determinant of the metric for the traversable AdS wormhole is given by the
following:

g = −
27 (K − 8)3

(
cosh

(
1/3

√
|Λ|

√
3z
))6

K2 (sin (θ))2

65536 (|Λ|)3 . (3.66)

Consequently the Weyl curvature scalar square is given by the following:

W = 4 (K2 + 16)2 Λ2

27
(
cosh

(
1/3

√
|Λ|

√
3z
))4

(K − 8)2
. (3.67)
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The Kretschmann curvature scalar (K̃) for the AdS wormhole is given by the equation:

K̃ = 11 Λ2

36
(
cosh

(
1/3

√
|Λ|

√
3z
))4

(K − 8)2

96
(
cosh

(
1/3

√
|Λ|

√
3z
))4

(K − 8)2

11 −

(8 K − 64) (K2 + 12 K − 32)
(
cosh

(
1/3

√
|Λ|

√
3z
))2

11 + K4 + 8 K3

11 + 368 K2

11 −

256 K

11 + 3072
11

. (3.68)

(a) (b)

Figure 3.11.: (a)Variation of P 2
1 for traversable AdS wormhole with z and the parameter

Λ. (b)Variation of P2 for traversable AdS wormhole with z and the param-

eter Λ. In both the cases the NUT parameter is K = 16. Here the blue

region represents high positive values and it gradually decreases through

the yellow region to the white colored region.

1. Weyl scalar proposal: From the above expressions, the ratio of the two curvature
scalars is obtained along straightforward calculations, and is given below:

P1 = 4
√

33
33

 (K2 + 16
)2
96

(
cosh

(
1/3

√
|Λ|

√
3z
))4

(K − 8)2

11

−
(8 K − 64) (K2 + 12 K − 32)

(
cosh

(
1/3

√
|Λ|

√
3z
))2

11 + K4 + 8 K3

11 +

368 K2

11 − 256 K

11 + 3072
11

−1 1
2

. (3.69)

The ratio of curvature scalars, i.e. P 2
1 , is given in the expression (3.69). For the

sake of clarity, it is also illustrated graphically in FIG.3.11(a).
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(a)

(b)

(c)

Figure 3.12.: Variation of entropy density s of AdS traversable wormhole with z for

different parameters. Here we have considered only the radial contribution

as defined in (3.8). Also the definition of gravitational entropy density is

calculated using P1.
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(a)

(b)

(c)

Figure 3.13.: Variation of entropy density s of AdS traversable wormhole with z for

different parameters. We have considered both the radial and angular

contribution (3.9) and the gravitational entropy density is calculated using

P1.
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In FIG.3.12 and FIG. 3.13 we have shown the variation of gravitational entropy
density with different parameters. In both these cases, P1 is being used for the
calculations. In FIG.3.12 we have only taken the contribution of the radial com-
ponent while determining the gravitational entropy density and in FIG. 3.13 both
the radial and angular contributions are taken into account.
In FIG.3.12(a) the variation of the gravitational entropy density of AdS wormhole
is shown with angular orientation θ, where we have fixed the other parameters
as Λ = −0.1, K = 16. In this case we see no change as we did not include the
angular contribution into our analysis. Next in FIG.3.12(b), the variation with the
parameter K is being studied for Λ = −0.1, θ = π

4 . As the value of K increases,
so does the value of gravitational entropy density. In the last figure FIG.3.12(c),
the variation of the gravitational entropy density of traversable AdS wormhole is
shown with various negative values of cosmological constant Λ for the fixed pa-
rameter values as K = 16, θ = π

4 . Here we can clearly observe that with increasing
negative value of the cosmological constant the peak value of the gravitational en-
tropy density increases. FIG. 3.13 shows these variations with a higher sensitivity
including both the radial and angular contributions in the entropy density. FIG.
3.13(a) shows the variation with the angular orientation while fixing the other
parameters at Λ = −0.1, K = 16. Here each angular orientation gives different
gravitational entropy unlike the previous case. FIG. 3.13(b) gives us the nature of
variation of entropy density with K when we fix Λ = −0.1, θ = π

4 . In FIG. 3.13(c)
the dependence of gravitational entropy density on the cosmological constant is
being depicted, where we have chosen our free parameters as K = 16, θ = π

4 .
Here the overall dependence remains the same but the extra contribution from
the angular components in the gravitational entropy density makes it non zero at
the throat region unlike in the previous case, which means that the gravitational
entropy density is continuous through the wormhole throat.
As we know that the gtϕ component is also nonzero in the metric of AdS traversable
wormhole, therefore the alternative definition of the gravitational entropy using P2
must be applied to see how the result differs from the former case. The graphical
representation of P2 is shown in FIG.3.11(b).
Consequently in FIG. 3.14 and FIG. 3.15 we have used P2 as the definition and
used the radial contribution only to draw the graphs (in FIG. 3.14), and in the
later figures both the contributions of radial and angular components have been
considered.
In FIG. 3.14(a) we have chosen Λ = −0.1, K = 16 to show the variation with the
angular orientation while in FIG. 3.14(b), the values Λ = −0.1, θ = π

4 are fixed to
show the variation with the parameter K. Similar to the case for P1, here too there
are no changes in FIG. 3.14(a) while the variations in FIG. 3.14(b) are also similar
to that of P1 except that the graphs are way more compact, i.e. the gravitational
entropy density is localized in a much more smaller region when we consider P2.
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(a)

(b)

(c)

Figure 3.14.: Variation of entropy density s of AdS traversable wormhole with z for

different parameters. Here we have considered only the radial contribution

as in (3.8). The gravitational entropy density is calculated using P2.
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(a)

(b)

(c)

Figure 3.15.: Variation of entropy density s of AdS traversable wormhole with z for

different parameters. Here we have considered both the radial and angular

contribution (3.9), and the gravitational entropy density is calculated using

P2.
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FIG. 3.14(c) shows the variation of gravitational entropy density with the negative
values of cosmological constant with the fixed parameters as K = 16, θ = π

4 where
we find that the magnitude of s increases with increasing negative values of the
cosmological constant Λ.
FIG. 3.15(a) shows the variation with θ for Λ = −0.1, K = 16. The introduction of
the angular component changes the entropy density drastically for higher values of
the angular orientation θ. If we fix Λ = −0.1, θ = π

4 as constants, then we obtain
FIG. 3.15(b), which shows the variation with K. Finally FIG. 3.15(c) shows the
variation with Λ for the fixed parameter K = 16, θ = π

4 . The introduction of the
angular component reduces the gravitational entropy density from a double peaked
one to a single peaked function but the overall evenness with respect to the radius
is not lost.
In general, the gravitational entropy density increases near the throat region when
we consider both the radial and angular contribution for our analysis. Therefore
we can say that the procedure involving the P2, which includes both the radial and
angular contribution, is more suitable for the analysis of gravitational entropy in
this case.

Appendix-II: Maldacena wormhole ansatz
Very recently Maldacena and Milekhin have discussed humanly traversable wormholes
[166], where they have proposed a hypothetical connecting wormhole between two op-
positely charged magnetic blackholes. This is an interesting situation, worth analysing.
The metric is given by

ds2 = r2
e [−(ρ2 + 1)dτ 2 + dρ2

(ρ2 + 1) + (dθ2 + sin2 θdϕ2)], −ρc ≤ ρ ≤ ρc (3.70)

where ρ = l(r − re)
r2

e

for ρ >> 1, l = t/τ and r − re << re are the interrelations

connecting the coordinates of (3.70) and (3.71). Beyond the limit of ρ = ±ρc of the
wormhole region, the geometry is of two extremal magnetic blackholes. In Fig.3.16 the
wormhole is connecting two extremal magnetically charged black holes given by the
following black hole metric (3.71):

ds2 = −fdt2 + dr2

f
+ r2(dθ2 + sin2θdϕ2), (3.71)

where A = q

2cosθdϕ; ℓp ≡
√

G4; re ≡
√

πqℓp

g4
; Me = re

G4
; f =

(
1 − re

r

)2
. Here q is the

magnetic charge which is an integer and Me is the mass of the BH at extremality. In
the near horizon region, re sets the radius of curvature and also the size of the 2-sphere.
At the extremal limit as r → re, an infinite throat develops. Using the principal null
tetrads we can easily get the following value of the Weyl scalar:
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Figure 3.16.: Embedding diagram of Maldacena wormhole ansatz

Ψ2 = re(re − r)
r4 .

Using the CET proposal we obtain the gravitational energy density of the BH as:

ρgrav = α

4π

∣∣∣∣∣re(re − r)
r4

∣∣∣∣∣ . (3.72)

Similarly the gravitational temperature can be computed as

Tgrav = 1
2π

∣∣∣∣re

r2

∣∣∣∣ . (3.73)

Finally the ratio of gravitational energy density to gravitational temperature for this
BH is given by

ρgrav

Tgrav

= α

2

∣∣∣∣∣(−r + re)
r2

∣∣∣∣∣ . (3.74)

For the sake of completeness, and to check the validity of CET proposal, we can compute
the gravitational entropy of this BH on a surface with radius R as:

Sgrav =
∫ R

0

∫ π

0

∫ 2π

0

α

2

∣∣∣∣∣(−r + re)
r2

∣∣∣∣∣ r2 sin θ

(1 − re

r
)drdθdϕ = απR2. (3.75)

Thus the CET gravitational entropy of the magnetized extremal BH is directly pro-
portional to the horizon area, conforming with the definition of Hawking-Bekenstein
entropy. Moreover, the ratio for the curvature scalars for the BH is given by the follow-
ing expression:

P 2
1 = 6(−r + re)2

7r2
e − 12rer + 6r2 . (3.76)

Next we calculate the Weyl scalar proposal gravitational entropy density for the con-
necting wormhole, which turns out to be: s = ks|∇.Ψ| = 0. Surprisingly, we find that
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the gravitational entropy of such wormholes vanishes in this proposal. This shows that
either the proposal itself is not valid in this case, or the wormhole itself is nonphysical
in nature.

Similarly for the CET proposal of gravitational entropy the gravitational energy den-
sity of the connecting wormhole is found to vanish, raising questions on the physical
viability of such WHs. The relevant expressions are given below:

ρgrav = 0; Tgrav = 1
2π

∣∣∣∣∣ ρ

re

√
1 + ρ2

∣∣∣∣∣ ; sgrav = 0 (ρ ̸= 0). (3.77)

As the gravitational entropy is zero even in the CET proposal, we can say that it
conforms to our analysis of the extremal magnetic BHs. As r → re, the ratio of curvature
scalars in (3.76) reduces to zero, indicating a zero gravitational entropy density for the
Weyl proposal. In this limit, for the CET proposal the gravitational energy density
in (3.72) also reduces to zero and the temperature in (3.73) becomes ∼

∣∣∣∣ 1
2πre

∣∣∣∣, which
matches with the wormhole gravitational temperature in the limit ρ >> 1. Consequently
the ratio in (3.74) becomes zero in this limit, thereby matching with the wormhole
counterpart. The interesting point to note here is that the gravitational temperature is
nonzero, but at ρ = 0. Thus at ρ = 0 we may still have a finite entropy, as in that case
the ratio of gravitational energy density to gravitational temperature assumes the form
0
0 , but these proposals are not yet equipped to address such cases. ”
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4. Thermodynamics of FRW Universe

With Chaplygin Gas Models
The contents of this chapter have been published in a journal, details of which are given
below:

JOURNAL REFERENCE: General Relativity and Gravitation, 51:158 (2019)
ARTICLE NAME: Thermodynamics of FRW universe with Chaplygin gas models

DOI: 10.1007/s10714-019-2645-8

The paper is quoted below:

“

4.1. Introduction
Thermodynamics plays a very crucial role both in cosmological analyses as well as in the
General Theory of Relativity. The semi-classical description of black hole physics tells us
that a black hole emits thermal radiation and behaves like a black body. This led to the
successful description of a black hole as a thermodynamic system [169]. The introduction
of the Bekenstein-Hawking entropy on the black hole event horizon yielded the complete
development of the laws of black hole thermodynamics. Bekenstein had to assign an
entropy function to a black hole in order to save the second law of thermodynamics
(SLT) from becoming erroneous on the black hole horizon [39]. The temperature and
the entropy of the black hole are proportional to the surface gravity on the horizon and
the area of the horizon, respectively. Hence these parameters are related to the geometry
of the black hole horizon. Moreover, the temperature, the entropy and the mass of the
black hole were found to satisfy the first law of thermodynamics [170].

All these prompted physicists to search for a possible connection between black hole
thermodynamics and the gravitational field equations. Jacobson [171] was the first to
derive the Einstein field equations from the proportionality of the black hole entropy and
the horizon area together with the fundamental relation δQ = TdS, claiming that this
relation is valid for all local Rindler causal horizons through each space time point, with
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δQ and T as the energy flux and Unruh temperature seen by an accelerated observer just
inside the horizon. Subsequently, Hayward [172] derived a unified first law of black-hole
dynamics and relativistic thermodynamics in spherically symmetric general relativity.
It was Padmanabhan [173] who formulated the first law of thermodynamics on “any”
horizon for a general static spherically symmetric space time, starting from the Einstein
equations. Thus the equivalence of the laws of thermodynamics with the analogous laws
of black hole mechanics on one side and the Einstein equations of the classical theory
of gravity on the other side, revealed a strong connection between quantum physics and
gravity.
In the same way, on the cosmological scale, the SLT can be implemented by assuming
that the universe is a closed system bounded by some horizon, preferably the cosmologi-
cal apparent horizon. Applying the first law of thermodynamics to the apparent horizon
of a FRW universe and considering the Bekenstein entropy on the apparent horizon,
Cai and Kim [174] derived the Friedmann equations for a universe with any spatial
curvature. They used the entropy formulae for the static spherically symmetric black
hole horizons in Gauss-Bonnet gravity and in Lovelock gravity, to obtain the Friedmann
equations in these theories. Paranjpe et al [175] showed that the field equations for the
Lanczos-Lovelock action in a spherically symmetric spacetime can also be expressed in
the form of the first law of thermodynamics. Akbar and Cai [176] extended the work of
Cai and Kim to the cases of scalar–tensor gravity and f(R) gravity, and subsequently
showed that [177] the Friedmann equation of a FRW universe can be rewritten as the
first law of thermodynamics on the apparent horizon of the universe and extended their
procedure to the Gauss-Bonnet and Lovelock gravity. Cai and Cao [178] showed that
the unified first law proposed by Hayward for the outer trapping horizon of a dynamical
black hole could be applied to the apparent horizon of the FRW universe for the Einstein
theory, Lovelock theory, and the scalar-tensor theories of gravity.

Although the cosmological event horizon does not exist in the big bang model of
standard cosmology, but in a general accelerating universe dominated by dark energy,
the cosmological event horizon separates out from the apparent horizon. Considering
the physically relevant part of the Universe to be bounded by the dynamical apparent
horizon, Wang et al [179] showed that although both the first and the second laws of
thermodynamics are satisfied in such a case, but if the boundary of the Universe is
assumed to be the cosmological event horizon, then both these laws break down at the
event horizon, if the usual definition of temperature and entropy as applicable to the
apparent horizon is extended to the event horizon. According to them, the first law
may apply only to variations between nearby states of local thermodynamic equilibrium
whereas the event horizon reflects the global properties of spacetime.

The conditions of validity of the generalized second law of gravitational thermodynam-
ics in the phantom-dominated era of the flat FRW universe, was examined by Sadjadi
[180]. Considering a homogeneous and isotropic universe, filled with perfect fluid having
an arbitrary equation of state, Mazumder and Chakraborty [181, 182] have shown the
validity of the GSLT of the universe with the event horizon as the boundary assuming
the first law of thermodynamics, with some restrictions on the matter. Jamil et al [183]
investigated the validity of the GSLT in the cosmological scenario where dark energy

124



4. Thermodynamics of FRW Universe With Chaplygin Gas Models

interacts with both dark matter and radiation. They calculated separately the entropy
variation for each fluid component and for the apparent horizon, and showed that the
GSLT is always and generally valid, independently of the specific form of the equation
of state (EOS) parameters of the fluids and of the background geometry. Tian and
Booth [184] reexamined the thermodynamics of the Universe by requiring its compati-
bility with the holographic type gravitational equations which govern the dynamics of
both the cosmological apparent horizon and the entire Universe. They proposed possible
solutions to the existing problems regarding the temperature of apparent horizon and
the evolution of cosmic entropy.

Yang et al [185] showed that for a constant EOS of dark energy, the allowed interval
of the EOS parameters for the validity of the GSLT has to be wD ≥ −1, in a universe
enveloped by the apparent horizon and containing a Schwarzschild black hole. Xing et
al [186] showed the validity of the thermodynamical properties of the universe in a new
parametric model of dark energy with the equation of state w = w0+w1.z(1+z)/(1+z2).
In the spatially homogeneous and isotropic universe, assuming that the temperature and
entropy in cosmology is as in a black hole, they examined the thermodynamical proper-
ties of the universe bounded by the apparent horizon and the event horizon respectively.
They found that the first and the second laws of thermodynamics are valid inside the
apparent horizon, while they break down inside the event horizon. Rani et al inves-
tigated the validity of the GSLT for a model of pilgrim dark energy interacting with
cold dark matter in the frame-work of dynamical Chern-Simons modified gravity in a
nonflat FRW universe [187]. Sharif et al [188] analyzed non-equilibrium aspects of ther-
modynamics on the apparent horizon of FRW universe in f(R, T ) gravity along with the
validity of GSLT. Cardone et al studied [189] two different dark energy models namely
the Barboza-Alcaniz parameterization and the phenomenologically-motivated Hobbit
model in the context of the GSLT. Iqbal et al [190] investigated the validity of GSLT
of the Ricci-Gauss-Bonnet dark energy and cold dark matter bounded by the apparent
horizon and event horizon in flat FRW universe. Other authors also analyzed the GSLT
in various theories and dark energy models like in [191, 192, 193, 194, 195].

Izquierdo and Pavon [196] explored the thermodynamics of dark energy by assuming
the existence of the observer’s event horizon in accelerated universes. They found that
except for the initial stage of Chaplygin gas dominated expansion, the GSLT is valid
in all such cases. The validity of the second law in an expanding Godel-type universe
filled with generalized Chaplygin gas interacting with cold dark matter has also been
examined [197]. Sharif and Saleem [198] studied the validity of the GSLT in the presence
of non-interacting magnetic field and new modified Chaplygin gas with FRW universe.
Bamba et al. discussed the viability of the Generalized Chaplygin gas (GCG) as an
alternative to ΛCDM model to explain the origin of both Dark matter and Dark energy
in a single fluid equation. They also discussed how the matter perturbation grows and
how the sound speed limits the magnitude of free parameter α in the EOS of GCG
[199]. Karami et al [200] investigated the validity of the GSLT in a non-flat FRW
universe in the presence of the interacting generalized Chaplygin gas with the baryonic
matter, where the universe is assumed to be enclosed by the dynamical apparent horizon.
Bandyopadhyay [201] showed the validity of the GSLT in the braneworld scenario with
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induced gravity and curvature correction terms along with a dark energy component,
namely, the Modified Chaplygin Gas on the 3-brane together with a perfect fluid as the
dark matter.

It is therefore evident that although the apparent horizon is physically much more
relevant to work with in a dynamical situation, but the event horizon has also its own
importance. As we know that in a dynamically evolving universe or a black hole, both
of these horizons are present, so it is justified to check for the validity of the generalized
second law of thermodynamics (GSLT) on these horizons for a universe filled with various
types of matter and/or energy, which in our case of study is a fluid like the Chaplygin
gas. Chaplygin gas models are very versatile and useful cosmological models suitable for
representing the different phases of evolution of the universe. In fact, the necessity of
a model which can explain the evolutionary history of the universe successfully, led to
the birth of the Chaplygin gas cosmology. Since the Chaplygin gas models can describe
the accelerating expansion of the universe in the current epoch, hence they provide us
a robust model for the mysterious Dark Energy. It is therefore quite prudent for one
to compare the different Chaplygin gas models from a thermodynamic point of view,
to identify the suitability of the different models in this group and hence comment on
their merits. For this purpose we have examined the validity of the GSLT both on
the cosmological apparent horizon and the cosmological event horizon for the different
Chaplygin gas models. As each model in this group is distinct from the other, we obatin
different cosmological consequences for the validity of the GSLT on both the horizons
in these models.

For the analysis of the cosmological apparent horizon, we have considered the Kodama-
Hayward temperature because the Kodama-Hayward surface gravity is more relevant for
the description of dynamical horizons [202]. In the case of the Variable modified Chap-
lygin gas, we have already determined the temperature of the FRW universe [205] in
another paper. This temperature is the bulk temperature. In this paper, after calculat-
ing the Kodama-Hayward temperature of the VMCG dominated FRW universe for the
apparent horizon, we have compared these two types of temperatures to see how their
behaviour affects the thermodynamics of the universe. To the best of our knowledge a
comparison of this kind have not been done earlier. Further, we want to point out that
our approach is much more general compared to other works as we did not assume any
specific definition of surface gravity (i.e. temperature) for our analysis in the case of
the cosmological event horizon. The analysis of generalized thermodynamics of FRW
universe for models like the Variable modified Chaplygin gas (VMCG), New Variable
modified Chaplygin gas (NVMCG), Generalized cosmic Chaplygin gas (GCCG), and
Modified cosmic Chaplygin gas (MCCG) on both the cosmological horizons is also a
completely new study. This will help further analysis on such models in future.

The plan of our work is as follows: in Section II we present a brief review of the
various Chaplygin gas models which we have analyzed in this paper. This is followed
by a general description of the theory of gravitational thermodynamics in Section III.
In Sections IV and V, we analyze the criterion for which the GSLT will be valid on the
cosmological apparent horizon and the cosmological event horizon, respectively, in the
case of FRW universes filled with various types of Chaplygin gases. We follow up with
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some useful discussions in the penultimate section and end up with the conclusions in
section VII.

4.2. The Chaplygin gas models
Two major problems of modern cosmology are those concerning Dark Energy and Dark
Matter. Dark matter is the invisible mass in the universe or some invisible source of
gravity which constitutes approximately 23 percent of the composition of the observable
universe. We also know that the universe is accelerating in its current state of expansion,
an effect which is attributed to the presence of Dark Energy (constituting approximately
70 percent of the observable universe). Although there is no clear understanding about
the exact nature of this component, there are different models for explaining its effect.
This led to the proposal of various types of exotic fluids as the matter content of the
universe. An interesting type of such a fluid is the Chaplygin gas. It is found that some
of the Chaplygin gas models can successfully describe all three phases of evolution of
the universe, which therefore makes them very useful for cosmological studies. Hence it
is necessary to examine the status of the GSLT on the cosmological horizons of FRW
universes with matter content in the form of different variants of Chaplygin gas. Below
we briefly present the Chaplygin gas models which we have analyzed in this work.

The equation of state for the Chaplygin gas [225] is given by

p = −B/ρ, (4.1)

where B is a positive constant, p is the pressure of the fluid, and ρ is the energy density.
The Generalized Chaplygin gas (GCG) [207], is represented by the equation of state

p = −B/ρα, (4.2)

where α is a positive constant lying within the range 0 ≤ α ≤ 1. For the Modified
Chaplygin gas (MCG) model [233], the equation of state (EOS) is

p = Aρ − B/ρα, (4.3)

where A and B are positive constants. The model which is further generalized is the
Variable Modified Chaplygin gas (VMCG) [235] with the EOS

p = Aρ − B(a)/ρα, (4.4)

where B(a) = B0a
−n = B0V

−n/3 is a function of the cosmological scale factor a of the
FRW universe, B0 is a positive constant, n is any constant, and we have assumed V = a3

for the FRW universe.
Advancing further, we have the New Variable Modified Chaplygin gas (NVMCG) [210]

with the EOS
p = A(a)ρ − B(a)/ρα, (4.5)
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where A(a) = A0a
−m, B(a) = B0a

−n are functions of the cosmological scale factor a,
with A0, B0, m as positive constants, n is any constant, and 0 ≤ α ≤ 1. The expression
for energy density is [210]

ρ = a−3e
3A0a−m

m

[
c0 + B0

A0

(
3A0(1 + α)

m

) 3(1+α)+m−n
m

× Γ
(

n − 3(1 + α)
m

,
3A0(1 + α)a−m

m

)] 1
1+α

,

(4.6)

where Γ(x, y) is the upper incomplete gamma function and c0 is the integration constant.
Then comes the Generalized Cosmic Chaplygin gas (GCCG) [211] with the EOS

p = −ρ−α[c + (ρα+1 − c)−w], (4.7)

where c = E
1+w

− 1, and E can take both positive or negative constant values under the
condition −L < w < 0, where L is a positive definite constant which can be larger than
unity. The expression for the energy density in this case is

ρ = [c + (c1NV −N + 1)
1

w+1 ]
1

α+1 , (4.8)

where c1 is an arbitrary integration constant, and N = (1 + α)(1 + w).
Finally, we have the Modified Cosmic Chaplygin gas (MCCG) with the EOS [212]

P = Aρ − ρ−α[(ρα+1 − C)−γ + C], (4.9)

where 0 < α ≤ 1, −b < γ < 0 and b ̸= 1. Here the parameter C = Z
γ+1 −1, where Z is an

arbitrary constant, and A is a positive constant. In the above EOS, if A → 0, then we
arrive at the EOS of GCCG. Using thermodynamic identity and binomial approximation,
we obtain the approximate form of energy density of the MCCG as [213]:

ρ =
[

C + (−C)−γ + ( ε
V

)M

A + 1 + γ(−C)−γ−1

] 1
1+α

, (4.10)

where ε = d(A + 1) 1
M , M = (1 + α)(1 + A), and A + 1 + γ(−C)−γ−1 ̸= 0. Here d is the

constant of integration obtained during the calculation of energy density.
These expressions will be used in our subsequent calculations.

4.3. Thermodynamic analysis
We know that the Friedman equations can be written on a dynamical horizon in the
form of the first law of thermodynamics [174, 176]

−dEH = THdSH , (4.11)

where dEH is the energy flowing across the horizon, dSH is the change of horizon entropy
because of it, and TH is the horizon temperature.
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Let us presume that the first law of gravitational thermodynamics holds on the cos-
mological horizons, and based on that premise the GSLT can be introduced in the form

dST

dt
= dSb

dt
+ dSH

dt
> 0, (4.12)

where ST is the total entropy, SH is the horizon entropy and Sb is the bulk fluid entropy.
Therefore, ultimately the GSLT is the direct extension of the SLT which says that
the total entropy of the universe plus the cosmological horizon entropy should always
increase.

4.3.1. General formalism
Let us assume that the universe bounded by the cosmological horizon is filled with a
fluid of energy density ρ and pressure p. The energy conservation relation is given by

ρ̇ + 3H(p + ρ) = 0, (4.13)
where H is the Hubble parameter. The Einstein field equations for homogeneous,
isotropic, flat FRW universe are

3H2 = ρ, (4.14)
2Ḣ = −(p + ρ). (4.15)

Assuming that the first law of thermodynamics holds on the cosmological horizon, we
can write

−dEH = THdSH , (4.16)
where TH is the temperature of the horizon, dEH is the amount of energy crossing the
horizon in time dt, and dSH is the amount of entropy change of the universe due to it.
If ρ̇ is the corresponding rate of change of the energy density of the universe, then we
can write

dEH = 4πR3
H ρ̇dt

3
= −4πR3

HH(p + ρ)dt. (4.17)

Substituting the above expression in the equation (4.16) depicting the first law of ther-
modynamics, we obtain the rate of change of horizon entropy as

dSH

dt
= 4πR3

HH(p + ρ)
TH

. (4.18)

We now use the Gibbs equation in the bulk to get the entropy of the fluid bounded by
the horizon in the form

THdSb = dEb + pdV, (4.19)
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where our underlying assumption is that the bulk temperature is equal to the horizon
temperature (TH = Tb), i.e. the bulk and the horizon surface are in thermal equilibrium.
Substituting V = 4πR3

H/3 and Eb = 4πR3
Hρ/3 in the Gibbs relation, we have

THdSb = (4πR2
HρṘH + 4

3πR3
H ρ̇ + 4πpR2

HṘH)dt. (4.20)

Therefore the rate of change of the fluid entropy is

dSb

dt
= 4πR2

H(p + ρ)(ṘH − HRH)
TH

, (4.21)

and the rate of change of total entropy is

dST

dt
= d(SH + Sb)

dt
= 4πR2

H(p + ρ)ṘH

TH

. (4.22)

4.3.2. Cosmological apparent horizon
It is known that for a spatially flat FRW universe, the apparent horizon and the Hubble
horizon coincides [177]. The area radius of the cosmological apparent horizon is given
by

RAH(t) = 1
H(t) . (4.23)

Now for a flat FRW universe, the apparent horizon evolves according to the relation

ṘAH(t) = −HḢR3
AH = (p + ρ)

2H2 . (4.24)

Using the above relation in the expression for rate of change of total entropy, we obtain

dST

dt
= 4π(p + ρ)2

2H4TAH

, (4.25)

which is a positive quantity, and hence our usual expectation is that the GSLT will
always be valid on the apparent horizon when the bulk fluid and the horizon are in
thermal equilibrium.

4.3.3. Cosmological event horizon
The proper radius of the event horizon in the FRW universe is

REH(t) = a(t)
∫ +∞

t

dt′

a(t′) , (4.26)
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where a(t) is the scale factor of the expanding universe. We know that if the above inte-
gral converges, then the universe will have an event horizon, and the equation according
to which the cosmological event horizon evolves is given by

ṘEH = HREH − 1. (4.27)

Using the above relation in the expression for rate of change of total entropy, we get

dST

dt
= 4πR2

EH

TEH

(p + ρ)(HREH − 1)

= 4πR2
EHH

TEH

(p + ρ)(REH − RAH). (4.28)

4.4. Validity of GSLT on the Cosmological apparent

horizon of various Chaplygin gas models
Lets us now examine the status of the GSLT on the cosmological apparent horizon of
FRW universes filled with the different variants of the Chaplygin gas listed in section II.

4.4.1. VMCG
The Kodama-Hayward temperature (KHT) of the cosmological apparent horizon for a
spatially flat FRW universe is given by [214]

kBT =
(
ℏG

c

)
(ρ − 3p)

3H
. (4.29)

Here we can rewrite H in terms of the redshift z. As (4.29) involves the pressure and
energy density of the fluid, it captures the cosmological essence of the model. But this
pressure and energy density are related by the EOS of the VMCG given by (4.4) where
B(a) = B0a

−n. Thus we have studied the variation of the KHT on the Apparent Horizon
(AH) for VMCG dominated FRW universe as a function of z for different values of n.
This is shown in FIG.4.1

Using the expression of KHT on the cosmological apparent horizon, we have also stud-
ied the variation of dST

dt
with respect to the free parameter n for the VMCG dominated

FRW universe, which is shown in FIG.4.2. From this figure, it is evident that the total
entropy on the AH always increases for different values of the parameter n. Thus the
GSLT is always valid on the apparent horizon of the VMCG dominated FRW universe
when we consider the Kodama temperature of the horizon.

In a separate paper [205] we have already determined the expression for the bulk
temperature of the VMCG in a FRW universe. It is therefore interesting to compare
the validity of GSLT on the AH of the VMCG dominated FRW universe determined in
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Figure 4.1.: Variation of Kodama-Hayward temperature T (z) on the AH for VMCG

dominated FRW universe as a function of z for different values of n.

terms of the KHT of the AH with the validity determined in terms of the temperature
of the FRW universe filled with VMCG matter. For this purpose we have used the
expression of the temperature of the VMCG dominated FRW universe which we have
calculated in the paper [205]. Substituting the EOS of the VMCG (given in equation
4.4) in the thermodynamic identity

(
∂U
∂V

)
s

= −P , we obtain the relation
(

∂U

∂V

)
s

= −A(U/V ) + B0V
−n/3(V/U)α. (4.30)

From equation (5.7) the energy density is determined accurately up to an integration
constant

ρ = 1
a

n
1+α

[
(1 + α)B0/N + C/a3N

] 1
1+α , (4.31)

where N = (A + 1)(1 + α) − n/3, and C is the integration constant. The expression of
energy density for the VMCG dominated FRW universe, as a function of scale factor, is
obtained as

ρ(a) = ρ0

a
n

1+α

[
Ωx + (an

0 − Ωx)(a0/a)3N
] 1

1+α , (4.32)

where we defined the dimensionless parameter

Ωx = (1 + α)B0

Nρ1+α
0

. (4.33)

Finally the temperature T (z) of this VMCG universe as a function of the redshift z is
obtained in the form [205]

T (z) =
T0(z + 1)3N(1+ α

1+α
)+3A( 1

Ωx
)

α
1+α

[1 + (z + 1)3N( an
0

Ωx
− 1)]

α
1+α

×
[ 1

Ωx
(1 − n

3N
) − 1

an
0
]an(1+ α

1+α
)

0

[(1 − n
3N

)( an
0

Ωx
− 1)(z + 1)3N − n

3N
]
. (4.34)
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Figure 4.2.: Plot showing the variation of dST

dt
with respect to the free parameter n on

the cosmological apparent horizon (using the Kodama temperature of the

AH) for VMCG dominated FRW universe, validating the GSLT on the AH.

The temperature of the VMCG dominated FRW universe is depicted in FIG.4.3 as a
function of redshift. It can be seen that in the future epoch, the measure of temperature
becomes negative and has an infinite discontinuity, which clearly indicates that the
VMCG model is thermodynamically unstable for positive values of the parameter n.
This is consistent with the conclusions derived by Panigrahi and Chatterjee in [215].

Figure 4.3.: Variation of T (z) as a function of z for different values of n for the VMCG

dominated FRW universe.

In the next two figures (shown in FIG.4.4), we have used the temperature of VMCG
dominated FRW universe in place of the horizon temperature for the near equilibrium
scenario. In this case we observe that there is a clear difference from FIG.4.2. For
negative n, the GSLT is always valid on the AH but for positive n, the GSLT gets
violated in the future epoch (i.e. for negative redshift).

As we have used the VMCG temperature in our entropy calculation, it is natural
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for us to come across a scenario in which the total entropy decreases for the range of
positive values of n. In actuality, this reflects the inherent thermodynamic behaviour of
the model itself in the cosmological context. In FIG.4.4(b), the negative rate of change
of total entropy for n > 0 is the result of the thermodynamic instability of VMCG for
n > 0 [215]. This is why we get to see different nature of the plots in FIG.4.2 and
FIG.4.4, respectively, when we use the two different temperatures (i.e. KHT and the
temperature of VMCG, respectively).

(a) (b)

Figure 4.4.: Variation of dST

dt
wrt the free parameter n preserving the validity of GSLT

on the cosmological apparent horizon (using temperature of FRW universe

dominated by VMCG).

In this context it may be noted that Chen et al. [216] have applied cosmological con-
straints on the VMCG model using the Markov chain Monte Carlo (MCMC) method.
They have analyzed the validity of the generalized laws of thermodynamics on the hori-
zons assuming the Hawking temperature of the horizons. However, in this paper we
have used the KHT for our analysis. This approach is different from the method used
by them. Thus the result of our analysis on the horizons, is more appropriate than those
obtained by them. While inspecting the rate of variation of the entropy on the horizon
as a function of redshift, they have extended their plot into the future epoch (i.e. to
negative values of z). In this paper we have also extended our plots into the future
epoch.

4.4.2. MCG
The case n = 0 in the VMCG model represents the MCG dominated FRW universe. In
FIG.4.4 we observe that the curve for n = 0 always obeys the GSLT on the cosmological
apparent horizon.
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4.4.3. GCCG
In [217], Sharif et al analyzed the thermodynamic stability of GCCG. Here we examine
the validity of GSLT on the apparent horizon of the universe filled with GCCG. FIG.4.5
shows the variation of dST

dt
with respect to the parameter w in the EOS given in (4.7),

for the FRW universe filled with GCCG. We find that the total entropy always increases
when ω > −1, but for ω < −1, the GSLT is violated in the future epoch.

(a) (b)

Figure 4.5.: Variation of dST

dt
wrt the free parameters ω maintaining the validity of GSLT

on the cosmological apparent horizon for GCCG.

(a) (b)

Figure 4.6.: Variation of dST

dt
wrt the free parameters ω maintaining the validity of GSLT

on the cosmological apparent horizon for GCCG.

Next we study the variation of dST

dt
with respect to the parameter w of the GCCG

dominated FRW universe for different values of the integration constant c1, and examine
its variation in FIG.4.6(a). From this figure it is clear that the GSLT is valid on the
cosmological apparent horizon only for positive c1.
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We also study the variation of dST

dt
with respect to the parameter w for a variation

in E. This is shown in FIG.4.6(b). It is evident that the GSLT is valid on the apparent
horizon only for E > 0. So we conclude that for the validity of GSLT on the cosmological
apparent horizon, the GCCG model parameters must satisfy the conditions w > −1, E ≥
0, and c1 > 0.

4.4.4. MCCG

We now study the variation of dST

dt
with respect to the arbitrary parameter Z in the

EOS of the MCCG dominated FRW universe and show the corresponding variation in
the subsequent figures. In the FIG.4.7(a), we find that the entropy of FRW universe filled
with MCCG is well behaved and obeys the GSLT for negative Z, and from FIG.4.7(b)
we find that the GSLT is valid for positive integration constant d.

(a) (b)

Figure 4.7.: Variation of dST

dt
wrt the free parameters Z, γ and the integration constant d,

while preserving the validity of GSLT on the cosmological apparent horizon

for MCCG, where we have chosen α = 0.1, and A = 2.

FIG.4.8(a) depicts some more variations of the parameters and evidently the total
entropy is well behaved only around Z = −2, γ = −2 and d = 1. Here we have assumed
the values of the parameters as α = 0.1, and A = 2. In FIG.4.8(b), we have explored
the variations for different values of fixed parameters i.e. A = 1, and α = 1. We can
see that the GSLT is valid in this case except for Z = 0, d = 1.0, and γ = −1.25. We
also find that the GSLT is valid for positive Z. Thus we conclude that the parameter d
must be positive and accordingly there are distinct values of γ for the validity of GSLT
on the cosmological apparent horizon in the MCCG model.

4.4.5. NVMCG
In this section we will do a similar analysis for the NVMCG model. In our calculations we
have assumed the values A0 = 1.0, B0 = 10.0, α = 1.0, and c0 = 1.0 for the parameters
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(a) (b)

Figure 4.8.: Variation of dST

dt
wrt the free parameters Z, γ and the integration constant d,

while preserving the validity of GSLT on the cosmological apparent horizon

for MCCG.

in the EOS of NVMCG. In FIG.4.9, FIG.4.10 and FIG.4.11, we have fixed m = 5 and
varied n. We can see that none of the plots are well-behaved and every curve indicates
a conditional validity of the GSLT. Moreover all these plots show an abrupt variation
in the rate of change of the total entropy during the evolution of the universe, which is
difficult to explain.

Figure 4.9.: Variation of dST

dt
as a function of redshift on the cosmological apparent

horizon for different values of n with m = 5 for NVMCG.

In FIG.4.12 we have fixed the parameter n and varied m. Here also none of the curves
satisfy the GSLT over their entire evolution. All the curves violate GSLT in the early
phase of the universe and then suddenly the entropy increases in the recent epoch of the
universe with vertical asymptotic discontinuities.

Thus from the above analysis we conclude that the NVMCG violates GSLT on the
cosmological apparent horizon.
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Figure 4.10.: Variation of dST

dt
as a function of redshift on the cosmological apparent

horizon for different values of n with m = 5 for NVMCG.

Figure 4.11.: Variation of dST

dt
as a function of redshift on the cosmological apparent

horizon for different values of n with m = 5 for NVMCG.

4.5. Validity of GSLT on the Cosmological Event

Horizon of various Chaplygin gas models
We now proceed to examine the status of the GSLT on the cosmological event horizon
(EH) of FRW universe dominated by the various Chaplygin gas fluids. We like to point
out that our analysis on the event horizon is a general treatment without assuming any
specific form of temperature.

As the event horizon is ‘teleological’ in nature [218, 219], we are only interested in
analyzing the overall validity of the GSLT on it. In the calculations with regard to
the cosmological EH, we have ignored the computation of REH and the corresponding
graphs, as the calculations become complicated due to increasing number of parameters
involved in the EOS of these models. Though the radius of the cosmological event
horizon can be calculated using equation (4.26), we do not require its explicit expression
to understand the nature of validity of the GSLT on the cosmological EH. Rather we
have tried to examine the validity of GSLT using simple algebraic manipulations which
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Figure 4.12.: Variation of dST

dt
as a function of redshift on the cosmological apparent

horizon for different values of m with n = 5 for NVMCG.

clearly demonstrates the conditional nature of the validity. However, we have examined
the case of the VMCG dominated FRW universe in details as this model is cosmologically
significant. Hence we have checked the validity of the GSLT on the cosmological event
horizon in the VMCG case.

4.5.1. VMCG
In the case of the Variable Modified Chaplygin gas, the rate of change of total entropy
on the cosmological event horizon is given by

dST

dt
= 4πR2

EHH

TEH

(
Aρ − B

ρα
+ ρ

)
(REH − RAH). (4.35)

Now for the validity of GSLT (i.e.ṠT > 0), we need REH > RAH , which implies that we
must have (A + 1)ρ > B

ρα . This finally leads us to the condition

ρ1+α >
B0a

−n

(1 + A) . (4.36)

In the above condition (4.36), we substitute the expression for energy density of the
VMCG given by (5.9), which is

ρ = ρ0

a
n

1+α

[
Ωx + (1 − Ωx)

(1
a

)3N
] 1

1+α

. (4.37)

This leads us to the following relation:[
Ωx + (1 − Ωx) 1

a3N

]
>

NΩx

(1 + α)(1 + A) . (4.38)
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Replacing the scale factor a by the redshift z by using the substitution a = 1
z+1 , we

obtain
(z + 1)3N >

−nΩx

3(1 + A)(1 + α)(1 − Ωx) . (4.39)

Considering the present day case we put z = 0 in the above relation, and arrive at the
limiting condition

n > 3(1 + A)(1 + α)
(

1 − 1
Ωx

)
. (4.40)

The above criterion depicts the condition for the validity of the GSLT on the event
horizon of a VMCG dominated FRW universe. Let us assume A = 1/3 , Ωx = 0.7
and α = 0.25 in order to model a cosmologically viable evolution of the universe. This
assumption leads us to the condition

(z + 1)(5−n) > −
(

n

2.14

)
. (4.41)

From this relation we can immediately observe the explicit dependence of the redshift z
on the free parameter n. We also see that when n is zero or positive, the relation becomes
a trivial one, but when n becomes negative (signifying a phantom dominated universe),
it prevents the redshift z from attaining the value of −1 (indicating the future of the
universe), as the left hand side becomes zero but the right hand side is still positive.
This indicates that for non-negative values of n, (p + ρ) > 0, and therefore, the above
relation is only valid for n ≥ 0. Now putting z = 0 in the criterion (4.40) and setting
A = 1/3, α = 0.25 and Ωx = 0.7, we get

n > 3(1 + A)(1 + α)
(

1 − 1
Ωx

)
⇒ n > −2.14.

Thus we arrive at the condition that n > −2.14 for the chosen values of the parameters
for the validity of GSLT in the VMCG filled FRW universe bounded by the event horizon,
provided we assume the a priori condition that REH > RAH . From the cosmological
analysis of VMCG in FRW universe by earlier workers, it has been found that for n ≥ 0,
the universe is dominated by quintessence [235] or cosmological constant. Therefore the
criterion (4.40) obtained above is consistent with it. From the above analysis we can
conclude that for n ≥ 0, GSLT is valid on the event horizon in a VMCG dominated
FRW universe (Fig. 4.13(a)). However, we note here that the model VMCG itself is
thermodynamically unstable in this range of n ≥ 0 [215].

Another condition for the validity of GSLT is REH < RAH with (p + ρ) < 0. From
the second condition quoted beside, we can say that

(z + 1)3N <
−nΩx

3(1 + A)(1 + α)(1 − Ωx) . (4.42)

Now for the appropriate values of the free parameters A = 1/3, Ωx = 0.7 and α = 0.25,
equation (4.42) leads us to the relation

(z + 1)5−n < −0.47n. (4.43)
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(a) (b)

Figure 4.13.: Variation of z wrt the free parameters n, α while preserving the validity of

GSLT on the cosmological event horizon for the condition of quintessence

(fig. a) and phantom dominated universe (fig. b).

This relation is not valid for n ≥ 0. It is known that the condition (p+ρ) < 0 represents
the case for n < 0 (phantom dominated universe), which is consistent with the above
relation (4.43). It is easy to realize that for −1 ≤ z ≤ 0, the relation certainly holds
true, and for z = 0 it yields us the condition n > −2.14. In fact, this condition is true
up to some positive values of z depending on the corresponding value of n. So we can
certainly say that the GSLT holds for the FRW universe filled with the VMCG fluid
during the current epoch and will also hold in the future.

However we can also see that for positive high values of z (in the early universe), the
relation (4.43) fails to hold. Consequently the GSLT is not valid in the early universe
for a Phantom like VMCG (Fig. 4.13(b)).

Therefore we can safely claim that for n < 0 (i.e. REH < RAH), the VMCG dominated
FRW universe violates the GSLT on the event horizon in the early phase of the universe
but it holds during the current epoch and will also hold in the future, and moreover in
this range of n < 0, the VMCG model itself is thermodynamically stable [215].

At this juncture we like to note that in our other paper [205], we have checked the
temperature variation of the FRW universe filled with VMCG, which is consistent with
the thermodynamic dependence of the values of the parameter n. In the present paper
also we find that the validity of the GSLT on the apparent horizon depends very much
on the value of the parameter n, when we use the temperature of VMCG dominated
FRW universe in place of the horizon temperature, for conditions approaching thermal
equilibrium. Our analysis clearly shows that negative value of n is thermodynamically
stable (or favoured) in the sense that the GSLT is valid on the apparent horizon in such
cases. In the same line of thinking we tried to investigate the validity of the GSLT on
the event horizon of the VMCG universe and found that the parameter space of the
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GSLT validity condition for the phantom case is incomplete, but is complete for the
quintessence case (Fig. 4.13).

4.5.2. MCG
Substituting n = 0 in the equation of state for VMCG, we get the equation of state for
MCG:

p = Aρ − B

ρα
. (4.44)

The condition of applicability of GSLT on the event horizon of a MCG dominated FRW
universe is then

(z + 1)3(1+A)(1+α) > 0 (4.45)
which is a trivial relation given the equation of state of MCG. Now if we consider z = 0
for our present day, then by putting n = 0 in the relation for n, we get

3(1 + A)(1 + α)
(

1 − 1
Ωx

)
< 0. (4.46)

For the chosen values of the parameters A, α and Ωx mentioned in the earlier section, we
find that the first two terms in the equation of state of MCG are positive, and we know
that the third term must be negative. Therefore we can say that the GSLT is always
valid on the event horizon of a MCG dominated universe iff REH > RAH .

4.5.3. GCG
The equation of state for GCG is given in (4.2) as

p = − B

ρα
. (4.47)

To consider the case of Generalized Chaplygin gas, we substitute n = 0 and A = 0 in
the viability relation (4.39) and we obtain

(z + 1)3(1+α) > 0, (4.48)

which is again a trivial condition. Moreover, if we put n = 0 and A = 0 in the relation
(4.40) for n, then for the present day value of z = 0, we get

3(1 + α)
(

1 − 1
Ωx

)
< 0. (4.49)

We know that the first term is always positive in the equation of state of GCG and
the second term is always negative. Therefore the above condition (4.49) is also trivial.
Therefore we can say that the GSLT is always valid on the event horizon of a GCG
dominated universe iff REH > RAH .
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4.5.4. GCCG
The equation of state for the GCCG quoted in Section II is given by [211]

p = −ρ−α[c + (ρα+1 − c)−w], (4.50)

and the expression for the energy density is

ρ = [c + (c1NV −N + 1)
1

w+1 ]
1

α+1 , (4.51)

where c1 is an arbitrary integration constant, and N = (1 + α)(1 + w). The rate of
change of total entropy in this model obeys GSLT on the cosmological event horizon if
REH > RAH , and (p + ρ) > 0. From the second condition beside, we get

c1NV −N

(c1NV −N + 1)
w

w+1
> 0. (4.52)

From the above expression we can say that the GSLT is valid in this case if c1N > 0.
So there are two possibilities: either (i) c1 > 0 and N > 0, or (ii) c1 < 0 and N < 0.

But we know that (1+α) > 0. Therefore the condition N > 0 means that −1 < w < 0,
and when N < 0, it means that w < −1. However the case N < 0 is not possible because
the equation of state parameter in this case should be greater than −1. Therefore when
REH > RAH , the condition for the GSLT to be valid on the event horizon of a FRW
universe filled with GCCG is c1 > 0, and −1 < w < 0. The initial conditions have to be
chosen in such a manner that we have c1 > 0.

The other condition for the validity of the GSLT on the event horizon of this universe
is REH < RAH and (p + ρ) < 0, which will then represent the phantom case. In the
same way as before, we arrive at the relation

c1NV −N

(c1NV −N + 1)
w

w+1
< 0, (4.53)

which is only possible when c1N < 0. Now we know that for the phantom case, the
equation of state parameter is w < −1, which suggests that N < 0. So c1 must be
positive.

Therefore when REH > RAH , the GSLT is valid when c1 > 0 and −1 < w < 0, and
when REH < RAH , the conditions are c1 > 0 and w < −1. So, if we choose the boundary
conditions in such a way that c1 > 0, then the GCCG dominated FRW universe obeys
GSLT on the event horizon.

4.5.5. MCCG
The equation of state for the Modified Cosmic Chaplygin gas is given by

P = Aρ − ρ−α[(ρα+1 − C)−γ + C], (4.54)
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where 0 < α ≤ 1, −b < γ < 0, b ̸= 1, C = Z
γ+1 − 1, Z being an arbitrary constant, and

A is a positive constant. The approximate form of energy density is

ρ =
[

C + (−C)−γ + ( ε
V

)M

A + 1 + γ(−C)−γ−1

] 1
1+α

, (4.55)

where ε = d(A+1) 1
M , M = (1+α)(1+A), A+1+γ(−C)−γ−1 ̸= 0, and d is the constant

of integration. Now from the EOS of MCCG, we conclude that (ρα+1 − C) > 0, which
then leads us to the condition

ρα+1 >
Z − (γ + 1)

(γ + 1) . (4.56)

For C > 0, we have Z > (γ + 1). In this case, if −1 < γ < 0, i.e. Z > 0, then ρα+1

must be greater in magnitude than some positive constant, but if γ < −1, no specific
conclusion can be drawn regarding the value of ρ. Again when C < 0, which means that
Z < (γ + 1), then ρα+1 is greater than some positive constant if γ < −1 (i.e. Z < 0),
but is greater than a negative value if −1 < γ < 0 (i.e. Z < 1).

From the expression of energy density we can say that γ can only take integral values,
and so we can discard the −1 < γ < 0 limit. Clearly we can see that if C < 0 and
γ < −1 (i.e. Z < 0), we can always have a lower positive bound of ρ.

To check for the validity of the GSLT on the event horizon of MCCG dominated FRW
universe, we note that the criterion for this validity is (P + ρ) > 0 when REH > RAH ,
as in the previous cases. Using this inequality we obtain the following condition:

(A + 1)ρα+1 − [(ρα+1 − C)−γ + C] > 0. (4.57)

Substituting the expression for energy density and using binomial expansion, we get(
ε

V

)M

+ (−C)−γ − ρα+1γ(−C)−γ−1 − [(−C)−γ + (−γ)ρα+1(−C)−γ−1 + ...] > 0,

(4.58)

and the end result is(
ε

V

)M

> [ρ(α+1)(−γ) + (−γ)ρ(α+1)(−γ−1)(−C) + ...]. (4.59)

The right hand side is definitely a positive quantity if C < 0. Denoting the entire term
inside the square brackets by K, we find that K > 0 for C < 0, but for C > 0 nothing
can be said regarding the sign of K. Also previous analyses of the equation of state of
MCCG in cosmology showed that for negative C and Z < 0, there is a positive lower
bound for the energy density, and hence for the condition of validity of GSLT on the
event horizon of MCCG we must have

d > V

[
K

(A + 1)

] 1
M

. (4.60)
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This gives us a positive lower bound for the integration constant d. Therefore we can
say that for C < 0 and γ < −1 (or Z < 0), the GSLT is valid on the event horizon of a
MCCG dominated FRW universe when we choose our initial conditions in such a way
that the integration constant stays above the lower bound V

[
K

(A+1)

] 1
M . In this limit of

Z < 0, the model MCCG itself is also thermodynamically stable [213].

4.5.6. NVMCG
In this section we analyze the the validity of GSLT for the NVMCG model. The equation
of state for the New Variable Modified Chaplygin gas is already quoted earlier and is
given by

p = A(a)ρ − B(a)
ρα

, (4.61)

and the expression for energy density is

ρ = a−3e
3A0a−m

m

[
c0 + B0

A0

(
3A0(1 + α)

m

) 3(1+α)+m−n
m

× Γ
(

n − 3(1 + α)
m

,
3A0(1 + α)a−m

m

)] 1
1+α

,

(4.62)

where Γ(x, y) is the upper incomplete gamma function and c0 is the integration constant.
The rate of change of total entropy obeys GSLT on the cosmological event horizon if
REH > RAH , and (p + ρ) > 0. From the second condition we get the following relation

ρα+1 >
B0a

−n

A0a−m + 1 . (4.63)

It follows that if n > 0 and m > 0 in the limit of large a, the above relation reduces
to the form ρα+1 > 0, which can correspond to the ‘quintessence’ form of dark energy,
whereas for n < 0 and m > 0, the relation becomes ρα+1 > ∞, so that the energy
density blows up, which corresponds to the phantom model of dark energy.

Now for the GSLT to be valid, the necessary condition is (p + ρ) > 0, which means
that the equation of state parameter is w > −1 (which corresponds to the quintessence
model). Therefore we can say that in the NVMCG model, the GSLT is valid on the
cosmological event horizon if n > 0 and m > 0 along with REH > RAH .

The other condition for the validity of GSLT on the cosmological event horizon is as
usual (p + ρ) < 0, when REH < RAH . The condition (p + ρ) < 0 can be written as

ρα+1 <
B0a

−n

A0a−m + 1 . (4.64)

If we consider the case n > 0 and m > 0 in the large a limit, the above relation becomes
ρα+1 < 0, which is not physically possible. So we can safely discard this case.
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Next we consider the range n < 0 and m > 0, which yields the relation ρα+1 < ∞,
which is a perfectly acceptable criterion. Using the expression for energy density we
arrive at the condition

c0 >

[
B0a

−(n−3(1+α))

(A0a−m + 1)

]
e

−3A0(1+α)a−m

m − B0

A0

(
3A0(1 + α)

m

)m−(n−3(1+α))
m

×

Γ
(

n − 3(1 + α)
m

,
3A0(1 + α)a−m

m

)
. (4.65)

This relation implies that m cannot be negative. When m ∼ 0, the NVMCG model
asymptotically approaches the VMCG model and for small positive values of m, the
above condition becomes

c0 >

[
B0a

−(n−3(1+α))

(A0a−m + 1)

]
e

−3A0(1+α)a−m

m

− B0

A0

(
3A0(1 + α)

m

)m−(n−3(1+α))
m

(3A0(1 + α)a−m

m

)n−3(1+α)
m

−1

e− 3A0(1+α)a−m

m

 , (4.66)

that is

c0 >

[
B(a)

(A(a) + 1) − B(a)
A(a)

]
a3(1+α)e− 3A0(1+α)a−m

m .

For large a and small positive m approaching zero, we find that the limit for c0 in the
NVMCG model is

c0 >

[
B0

(A0 + am) − B0

A0

]
a3(1+α)−n+m. (4.67)

Thus the limit on c0 depends explicitly on the exponent 3(1 + α) − n + m. If n <
3(1 + α) + m, the value of the integration constant blows up (i.e. c0 > −∞) implying
that the energy density blows up for large values of a. But if n > 3(1 + α) + m, we must
have c0 > 0 in the large a limit. In the special case n = 3(1 + α) + m, the integration
constant becomes c0 >

[
B0

(A0+am+3(1+α)) − B0
A0

]
, i.e. it is greater than a negative constant

value. In the asymptotic limit of m ∼ 0, we obtain the condition c0 > 0 for large values
of a, for the validity of GSLT in the FRW universe filled with NVMCG and bounded by
the event horizon.

4.6. Discussions
The entire analysis in this paper is based on the assumption that there is enough time
for the fluid to attain thermal equilibrium with the cosmological horizons. If there is no
thermal equilibrium, the validity of GSLT on the cosmological horizons becomes much
more conditional.
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In absence of thermal equilibrium between the fluid and the horizon [184] (i.e. TH ̸=
Tb), we may assume a near equilibrium situation and write an approximate relation for
the rate of change of total entropy as

dST

dt
= 4πR2

H(p + ρ)
(

HRH

TH

+ (ṘH − HRH)
Tb

)
. (4.68)

We can always think of the bulk temperature to be very near to the horizon temperature
i.e. Tb = TH +δT , where we are assuming δT

TH

<< 1. The rate of change of total entropy
in near-equilibrium situation becomes

dST

dt
≃ dS0

T

dt
+ δT

T 2
H

4πR2
H(p + ρ)(HRH − ṘH), (4.69)

where dS0
T

dt
≡ 4πR2

H(p+ρ)ṘH

TH
, is the rate change of total entropy when there is thermal

equilibrium.
For the cosmological apparent horizon (with TAH ̸= Tb), the rate of change of total

entropy becomes

dST

dt
= 4π(p + ρ)2

2H4Tb

+
( 4π

H2TAHTb

)
(p + ρ)(Tb − TAH). (4.70)

In that case, we can see that the GSLT is not always valid on the cosmological apparent
horizon. The first term on the right hand side is always positive, and therefore either
the second term is also positive (which suggests that (p + ρ) > 0 for Tb > TAH , or
(p + ρ) < 0, Tb < TAH), or as a whole the right hand side of the above equation remains
positive even if the second term becomes negative.

If (p + ρ) > 0, and Tb < TAH , we obtain the condition

(p + ρ)
2H2 >

(
1 − Tb

TAH

)
, (4.71)

which represents the quintessence dominated universe. Another possibility is that if
(p + ρ) < 0, and Tb > TAH , the condition for the validity of GSLT on the cosmological
apparent horizon becomes

(p + ρ)
2H2 <

(
1 − Tb

TAH

)
, (4.72)

which then represents the phantom dominated universe.
Now in the near-equilibrium scenario, the rate of change of total entropy on the

cosmological apparent horizon can be written as

dST

dt
≃ dS0

T

dt
+ δT

T 2
AH

[
4π(p + ρ)

H2 − 4π(p + ρ)2

2H4

]
− 4π(p + ρ)

H2
(δT )2

T 3
AH

, (4.73)
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which agrees with the general formula in the first order terms of δT . Here dS0
T

dt
≡ 4π(p+ρ)2

2H4TAH
,

is the rate of change of entropy on the cosmological apparent horizon when there is
thermal equilibrium.

In the same way, if the temperature on the cosmological event horizon and the bulk
fluid temperature are not in equilibrium, then we have the rate of change of total entropy
as

dST

dt
= 4πR2

EHH(p + ρ)
(

REH

TEH

− RAH

Tb

)
. (4.74)

In this case, for the GSLT to be valid on the cosmological event horizon, the conditions
are either (p+ρ) > 0, REH

TEH
> RAH

Tb
(which represents the quintessence dominated universe)

or the other possibility is that (p+ρ) < 0, REH

TEH
< RAH

Tb
(the phantom dominated universe).

In the near-equilibrium scenario, the rate of change of total entropy on the cosmolog-
ical event horizon can be written as

dST

dt
≃ dS0

T

dt
+ δT

T 2
EH

4πR2
EH(p + ρ), (4.75)

which again agrees with the general formula given above. Once again, dS0
T

dt
≡ 4πR2

EH

TEH
(p+

ρ)(HREH − 1) is the rate of change of entropy on the cosmological event horizon when
there is thermal equilibrium.

Therefore in dynamical situations, if we assume that the difference in temperature
is not very large, and do perturbative analysis around the horizon temperature, we
can always get the equilibrium term in the leading order with some correction terms
with higher orders in δT . Hence, the study of the near equilibrium scenario becomes
important from this point of view.

Thus we can see that in absence of thermal equilibrium, the validity of the GSLT on
the cosmological horizons becomes far more conditional. Here also we can do the same
analysis as done in our previous section to find out how the free parameters affect these
conditions.

4.7. Conclusions
In this work we have examined the thermodynamic viability of some dark energy models
which may be considered as alternatives to the ΛCDM model. The Chaplygin gas
models, especially the VMCG model, is successful in explaining all three phases of
evolution of the universe, namely, the radiation dominated phase, the matter dominated
phase and the vacuum energy dominated phase. Thus it is more versatile than the ΛCDM
model. Although strict constraints cannot be obtained from our analysis on the validity
of GSLT for the different Chaplygin gas models, yet it provides us with clear ranges of
parameters and in some cases these ranges conforms to the results obtained by other
authors on those models, thereby establishing the appropriateness of our thermodynamic
analysis of these models. Our analysis provides us with a clear picture on how to choose
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these models if the GSLT is to hold in a FRW universe filled with such fluids. It is to be
noted that the universal thermodynamics is not the only factor determining the physics
of these models. The validity of GSLT on cosmological horizons is a necessary condition
for any cosmological model to be considered physically realistic.

In the case of the cosmological apparent horizon, from our consideration of the Kodama-
Hayward temperature, we conclude that the MCG and VMCG models always obey
the GSLT. For the case of the GCCG, the model parameters should lie in the range
c1 > 0, E ≥ 0, −1 < w < 0, whereas for the MCCG model the parameter d must be
positive. However, the NVMCG model does not obey the GSLT on the cosmological
apparent horizon during the entire evolution of the cosmos. Either it has abrupt discon-
tinuities, or the total entropy simply decreases in magnitude during certain phases of
the evolution. Therefore the NVMCG violates the GSLT on the cosmological apparent
horizon.

For the cosmological event horizon, we find that the validity of GSLT is always con-
ditional, which we enlist below:

• For the VMCG model we have shown that for n > 0, the GSLT is valid on the
cosmic event horizon with the automatic condition REH > RAH . For n < 0, with
the condition REH < RAH , the GSLT is violated on the cosmological event horizon
(i.e. phantom dominated VMCG model violates GSLT on the event horizon).
Therefore the validity of the GSLT on the event horizon favors the quintessence
dominated (n > 0) FRW universe in the VMCG model.

• In the MCG dominated FRW universe, the GSLT is always valid on the cosmo-
logical event horizon. It is also valid for GCG dominated FRW universe.

• In the case of GCCG dominated FRW universe, the GSLT is valid conditionally
on the cosmological event horizon. In the case when REH > RAH , the equation
of state parameter has to be −1 < w < 0, and the integration constant c1 has to
be chosen positive. In the case of REH < RAH , the parameter should be w < −1,
and again the integration constant c1 has to be positive. So in both the cases,
depending on the value of the parameter w and the initial conditions for c1 to be
positive, the validity of GSLT on the cosmological event horizon for the GCCG
model can be achieved in a FRW universe.

• In the NVMCG model, the GSLT is valid on the cosmological event horizon for two
conditions. One is that if REH > RAH , then the GSLT is valid for the parameters
n > 0 and m > 0. Therefore when REH > RAH , the validity of GSLT on the
cosmological event horizon favors the quintessence dominated FRW universe for
the NVMCG model. The second possible condition is obtained for REH < RAH .
In this case we have shown that the only possibility is n < 0 and m > 0 for the
validity of the GSLT.

• We also want to point out that the limit on the value of Z for the validity of GSLT
on the event horizon of the universe filled with MCCG is consistent with the bound
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on Z as obtained by Sharif [213] for the thermodynamic stability of MCCG. Both
the analysis of [213] and that of ours yield the condition that Z < 0.

Therefore as we always know that if we consider the universe to be bounded by the
cosmological apparent horizon, then every fluid model satisfies the GSLT, but with the
cosmological event horizon as the boundary surface, the situation changes, and different
models demand different parameter ranges for the validity of the GSLT on the bounding
surface. ”
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5. Evolution of FRW universe in

variable modified Chaplygin gas

model
The contents of this chapter have been published in a journal, details of which are given
below:

ARTICLE NAME: Evolution of FRW universe in variable modified Chaplygin gas
model
arXiv:1906.12185v1 [gr-qc] 27 Jun 2019

The paper is quoted below:

“

5.1. Introduction
Einstein’s General Theory of Relativity (GTR) revolutionized our understanding of grav-
ity and the structure of space-time. It predicted many new things like the expansion of
the universe, space-time singularity, and most recently, the discovery of the gravitational
waves was another feather in the cap of GTR. But following the distance measurements
of Type Ia supernova [220, 221, 222, 223, 224], astronomers came to the understanding
that the universe’s expansion is accelerated at the present time, an observation which
could only be accounted for by the dynamics of a hitherto unknown form of energy,
called “Dark energy” (DE). Coupled with this was the problem of explaining the ob-
served rotation curve of the galaxies, which lead to the hypothesis of non-baryonic Cold
Dark Matter (DM), constituted of particles which are yet to be detected directly. Since
then, scientists have proposed a variety of theories to explain these observations. All
these models can be broadly classified into two major groups: either one has to change
the geometry part of the Einstein field equations to explain these observations, or change
the matter-energy part. In an effort to modify the matter part, several researchers pro-
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posed the existence of various exotic fluids, a prominent one being the ‘quintessence’,
to explain the Dark energy. Dark Matter is gravitationally attractive, being responsi-
ble for the clustering of matter in the universe, whereas dark energy is repulsive and
responsible for the accelerated expansion of the universe. At the same time, scientists
were also looking for a model which could simultaneously explain the mechanism of both
the DE and DM. These searches led to the development of the so-called Chaplygin Gas
Cosmology.

The Chaplygin gas (described by the equation of state P = −B/ρ) [225, 226], is
an exotic perfect fluid. It explains both the aspects of DE and DM in a simple way
and at the same time conforms to the observational data quite well. Several models of
Chaplygin gas have been proposed in succession to explain the observational data more
accurately. The simplest one is the generalized Chaplygin gas (GCG) [227, 228, 229, 230]
with an equation of state

P = −B/ρα, (5.1)
where B is a positive constant and the parameter α takes on values such that 0 < α ≤ 1.

The variable Chaplygin gas (VCG) was first proposed by Zhang and Guo [231, 232]
with the equation of state

P = −B(a)/ρ, (5.2)
where the constant coefficient B is replaced by a variable coefficient B(a) = B0a

−n.
Although it explains two important phases of the evolution of the universe: the dust
phase and the present accelerated expansion phase, but it did not capture the earlier
radiation-dominated phase of the universe. Hence came the next model: the modified
Chaplygin gas (MCG) [233, 234] with the equation of state

P = Aρ − Bρ−α, (5.3)

where A and B are positive constants. This MCG model has the amazing capability
to describe all three evolutionary phases of the universe, starting with the radiation
phase (with A = 1/3), then going through a pressureless phase (dust phase), and then
transiting into the present negative pressure phase dominated by dark energy.

Subsequently, in order to explain the observational data even more accurately, re-
searchers came up with more refined models in which the parameter B was assumed
to be a function of the scale factor a(t) of the FRW universe. This led to two mod-
els, namely, the variable generalized Chaplygin gas (VGCG) and the variable modified
Chaplygin gas (VMCG) [235]. The VMCG equation of state is

P = Aρ − B(a)ρ−α, (5.4)

where B(a) = B0V
−n/3, or B(a) = B0a

−n (for FRW universe). Here the parameters
A, B0 are positive constants and n is also a constant. This model can describe dark
energy more accurately because of the extra free parameter n appearing in the equation
of state.

Once a cosmological model is proposed, it becomes necessary to examine the viability
of such models from the point of view of the corresponding cosmological dynamics,
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as well as its thermodynamic stability. Several authors have already worked on these
aspects (see for example [236, 237]). Here in this paper, we will deduce the temperature
evolution of the FRW universe filled with VMCG as a function of red shift z. We will
also use observational data to determine the redshift at the epoch when the transition
from deceleration to acceleration happened. We deduced the values of other relevant
parameters like the Hubble parameter, the equation-of-state parameter and the speed
of sound in terms of the redshift parameter and examined how these values differ from
the results obtained from previous works on MCG and other Chaplygin gas models
for the various values of n permitted by thermodynamic stability. The temperature of
decoupling is calculated with the value of decoupling redshift as z ≃ 1100.

5.2. Thermodynamic analysis
The metric corresponding to the flat FRW universe is given by

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2sin2θdϕ2), (5.5)
where a(t) is the scale factor. For the sake of calculations, we have assumed V = a3 for
the FRW universe. The equation of state of the VMCG is

P = Aρ − Bρ−α, (5.6)

where B = B0V
−n/3. Now we have the well known thermodynamic identity

(
∂U
∂V

)
s

= −P ,
in which we substitute (5.6) to get(

∂U

∂V

)
s

= −A(U/V ) + B0V
−n/3(V/U)α. (5.7)

From this equation (5.7), the energy density is determined accurate up to the order of
an integration constant in the form

ρ = 1
a

n
1+α

[
(1 + α)B0/N + C/a3N

] 1
1+α , (5.8)

where N = (A + 1)(1 + α) − n/3, and C is the integration constant which can be an
universal constant or a function of entropy S. Using the boundary condition i.e. the
present day energy density ρ0 = ρ(a0) in the above relation (5.8), we can determine the
integration constant in terms of ρ0 and a0. The resulting expression of energy density
for the VMCG in FRW universe as a function of scale factor is

ρ(a) = ρ0

a
n

1+α

[
Ωx + (an

0 − Ωx)(a0/a)3N
] 1

1+α , (5.9)

where we have defined the dimensionless parameter

Ωx = (1 + α)B0

Nρ1+α
0

. (5.10)
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Introducing the parameter R = (1 + A)(1 + α), and substituting n = 0 in the above
equation (5.9), we get the energy density for MCG as

ρ(a) = ρ0
[
Ωx + (1 − Ωx)(a0/a)3R

] 1
1+α . (5.11)

The expression (5.9) for the energy density can also be derived using the field equations
for FRW cosmology. Here we have used purely thermodynamic approach and got the
same expression. This in fact shows the close relation between GTR and thermodynam-
ics.

We know that the first law of thermodynamics can be written in the form

TdS = d(ρ/m) + Pd(1/m), (5.12)

where S is the entropy per particle, ρ is the total energy density, P is the pressure, T is
the temperature in Kelvin, and m is the particle density in the system. Equation (5.12)
can be rewritten as

dS = (1/Tm)dρ − (P + ρ)/Tm2dm. (5.13)
This leads us to two thermodynamic relations:(

∂S

∂ρ

)
m

= 1/Tm, (5.14)

and (
∂S

∂m

)
ρ

= −(p + ρ)/Tm2. (5.15)

As T = T (ρ, m), the following identity becomes obvious:

dT =
(

∂T

∂m

)
ρ

dm +
(

∂T

∂ρ

)
m

dρ. (5.16)

Along with this we also have the integrability condition of the first law as

T (∂P/∂ρ)m = m (∂T/∂m)ρ + (p + ρ) (∂T/∂ρ)m . (5.17)

The above two equations (5.16) and (5.17) can be solved for the unknowns (∂T/∂m)ρ

and (∂T/∂ρ)m, and the condition for this is

ṁ(p + ρ) − mρ̇ = 0. (5.18)

Now substituting this result back into the previous identities (5.16) and (5.17), we
obtain the relation

dT/T = (dm/m)(∂P/∂ρ)m. (5.19)
If we now assume that the comoving particle number (proportional to ma3) of the fluid
is conserved in the FRW universe, then we get the relation

(ṁ/m) = −3(ȧ/a), (5.20)
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and substituting (5.20) in the relation

Ṫ /T = (ṁ/m)
(

∂p

∂ρ

)
m

,

we obtain
Ṫ /T = −3(ȧ/a)

(
∂p

∂ρ

)
m

. (5.21)

In order to determine
(

∂p

∂ρ

)
m

, we use the equation of state of VMCG to arrive at the
expression (

∂p

∂ρ

)
m

= A + B0αa−n

ρ(α+1) + B0nρ−α

a(n+1)

(
∂a

∂ρ

)
m

. (5.22)

Now using the conservation equation

3 ȧ

a
(p + ρ) + ρ̇ = 0, (5.23)

and the equation of state for VMCG, we get

B0nρ−α

a(1+n)

(
∂a

∂ρ

)
m

= −nB0a
−n

3(1 + A)ρ(1+α) − 3B0a−n
. (5.24)

With the help of the equations (5.21), (5.22), (5.24) and (5.9) we finally obtain the
following relation (

dT

T

)
= −3A

(
da

a

)
+

3nB0

(
da

a

)
3(1 + A)ρ1+α

0 [Ωx + (1 − Ωxa−n
0 )(a0/a)3Nan

0 ] − 3B0

−
3B0α

(
da

a

)
ρ1+α

0 [Ωx + (1 − Ωxa−n
0 )(a0/a)3Nan

0 ]
. (5.25)

From (5.25), we now calculate the temperature as a function of scale factor a(t). This
yields

T (a) = T0

(1
a

)3A
 1 + (1−Ωx

Ωx
)

a3N + (1−Ωx

Ωx
)

 α
1+α

×

 ( n
n−3N

) + (1−Ωx

Ωx
)

a3N( n
n−3N

) + (1−Ωx

Ωx
)

 . (5.26)
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To derive the temperature T (z) as a function of the redshift z, we substitute (z +1) =
a0
a

in T (a), and finally arrive at the expression

T (z) =
T0(z + 1)3N(1+ α

1+α
)+3A( 1

Ωx
)

α
1+α

[1 + (z + 1)3N( an
0

Ωx
− 1)]

α
1+α

×
[ 1

Ωx
(1 − n

3N
) − 1

an
0
]an(1+ α

1+α
)

0

[(1 − n
3N

)( an
0

Ωx
− 1)(z + 1)3N − n

3N
]
. (5.27)

Figure 5.1.: Variation of temperature T (z) as a function of z for different values of n,

where we have taken A = 1/3, Ωx = 0.7, a0 = 1, and α = 0.25 to see how

the free parameter n affects the temperature T (z) in the VMCG model.

This is the exact expression of temperature in terms of the redshift z, for VMCG. In
Fig. 5.1, we have plotted the temperature T (z) for different values of the free parameter
n. We can see that for large z, the temperature decreases linearly with decreasing z, but
for small z it falls to zero in a gradual nonlinear fashion as z goes to negative values,
indicating the possible future evolution of temperature of the universe. In this paper,
wherever possible, we have extended the plots up to z = −1 in order to take into account
the future evolution of the model.

The cosmic microwave background radiation (CMBR) is a fundamental consequence
of the hot Big-Bang. It is the radiation leftover after the decoupling from matter in the
early evolutionary phases of the Universe. This radiation excites the rotational levels
of some interstellar molecules, including carbon monoxide (CO), which can serve as a
measuring device for the astronomers. Indirect measurement of T (z) is one of the most
powerful cosmological tests available.

Assuming that the CMB is the only source of excitation, Songaila et al. (1994)
[238] determined its temperature to be TCMB = 7.4 ± 0.8K from neutral carbon atoms
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Figure 5.2.: A fit of the temperature T (z) using some observational points available in

literature (listed in TABLE I), where we have taken A = 1/3, Ωx = 0.7,

a0 = 1, and α = 0.25 in the VMCG model. Here the value of α was fixed

to 0.01 and the fitted best value of n is −0.0137.

at z = 1.776 in a cloud towards the quasar Q1331 + 170. Subsequent improvements
have placed the estimate for the present CMB black-body temperature at the value of
TCMB = 2.725 ± 0.002K (Mather et al. 1999 [239]), which was measured locally (at
redshift z = 0).

Lima et al. [240] argued that the CMB temperature at high z may be smaller than
the predicted standard values, which opened the scope of alternative models for the
big bang. Using new elements in the form of decaying vacuum energy density and
gravitational ‘adiabatic’ photon creation along with the late inflationary models driven
by a scalar field, they deduced a new temperature law and compared its predictions with
the standard cosmological results.

Srianand et al. (2008) [241], also assumed the CMB to be the only source of excitation
and imposed stringent upper-limits on TCMB for a large sample of C I fine structure
absorption lines detected in high signal to noise, high resolution spectra. They detected
carbon monoxide in a damped Lyman−α system at zabs = 2.41837 in the SDSS database
towards SDSS J143912.04 + 111740.5, and from the CO excitation temperatures they
determined TCMBR = 9.15 ± 0.72K.

In their paper, J. Ge et al. [242] presented the detection of absorption lines from the
ground state and excited states of C I in the z = 1.9731 damped Lymanα system of
the QSO 0013 − 004 and estimated other contributions to the excitation of the C I fine-
structure levels. They used the population ratio of the excited state to the ground state
and estimated the CMBR temperature of T = 7.9 ± 1.0K at 0.61 mm and z = 1.9731,
which matched with the predictions of standard cosmology at that time.
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Noterdaeme et al. (2010) [243], in their paper, presented the analysis of a sub damped
Lyman-α system with neutral hydrogen column density at zabs = 2.69 toward SDSS
J123714.60 + 064759.5. The excitation of CO was found to be dominated by radiative
interaction with the CMBR and they derived Tex(CO) = 10.5K corresponding to the
expected value of TCMBR(z = 2.69) = 10.05K.

Using three new and two previously reported CO absorption line systems detected in
quasar spectra during a systematic survey carried out using VLT/UVES, P. Noterdaeme
et al. [244] constrained the evolution of TCMB to z ∼ 3. Combining their measurements
with previous constraints, they obtained TCMB(z) = (2.725 ± 0.002) × (1 + z)1−βK with
β = −0.007 ± 0.027.

All these have motivated us to derive exact expression for the temperature of the FRW
universe dominated by VMCG matter as a function of redshift z, in order to check for
the viability of this cosmological model by using this observational constraint.

Table 5.1.: T(z) table for different values of redshift as obtained from different references

mentioned in the column

z T(z) Reference

1.776 7.4+0.8
−0.8 [238]

1.7293 7.5+1.6
−1.2 [244]

1.7738 7.8+0.7
−0.6 [244]

2.6896 10.5+0.8
−0.6 [243, 244]

2.4184 9.15+0.7
−0.7 [241, 244]

2.0377 8.6+1.1
−1.0 [244]

1.9731 7.9+1.0
−1.0 [242]

0 2.725+0.002
−0.002 [239]

We have used some of the observational temperature data points for different redshifts
in the Fig.5.2 from the Table 5.1 and used our theoretical curve to show the overall
agreement with the cosmological observations.

If we substitute the parameter values α = 0.25, A = 1/3 and Ωx = 0.7 in (5.27), then
we get the expression of temperature as a function of the free parameter n:

T (z) = 2.9(z + 1)
[
(z + 1)n−5 + 3

7

]−1/5

×
(

(13n − 15)
7n(z + 1)n−5 + 6n − 15

)
. (5.28)

We should be able to get the corresponding expression for MCG if we put n = 0 in
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equation (5.28). After substituting n = 0 in (5.27), we obtain

T (z) =T0(z + 1)3(R−1)

× [Ωx + (1 − Ωx)(z + 1)3R]−α/1+α. (5.29)

This result matches exactly with the corresponding expression for the MCG as calculated
by Bedran et al [245]. We now have a working formula for the temperature. We can use
the boundary conditions as T0 = 2.7K and substitute the values of other variables like
A = 1/3 (for the radiation phase) and Ωx = 0.7 (most commonly used and accepted dark
energy parameter) in equation (5.27) to get the expression of temperature in terms of
α and n. If we substitute n = 0 (the MCG case) and α = 1

4 in the resulting expression,
then we obtain

T (z) = 2.90K(z + 1)[(z + 1)−5 + 3/7]− 1
5 , (5.30)

which is consistent with the expression of temperature in the paper [245]. Unfortunately
for VMCG we don’t know the constraints on α and n. From the consideration of ther-
modynamic stability in the case of VMCG, one of the authors [236] have shown that the
condition for stability is n ≤ 0.

Figure 5.3.: Variation of temperature T (z) as a function of z for different values of α,

where we have taken A = 1/3, Ωx = 0.7, and n = −0.01 to see how the free

parameter α affects the temperature T (z) in the VMCG model.

In Fig. 5.3 we have shown the temperature evolution of the universe as a function of
redshift for different values of α where we have chosen a fixed value of the parameter
n = −0.5. We can clearly see that as the value of α increases, the temperature increases
for a particular value of n. For the MCG model, from the above equation (5.30), using
the decoupling redshift as z ≈ 1100, the temperature of decoupling (Td) is found to be
Td ≈ 3800K. For VMCG the decoupling temperature is complicated, and depends on
the parameters n and α. Putting the values A = 1/3, z = 1100 and Ωx = 0.7 in equation
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(5.27), we arrive at the following relation

Td(n, α) = (2.7)(1101)3N(1+ α
1+α

)+1(1.43)
α

1+α

[1 + (1101)3N(0.43)]
α

1+α

×
[(1.43)(1 − n

3N
) − 1][

(1 − n
3N

)(0.43)(1101)3N − n
3N

] . (5.31)

where 3N = 4(1 + α) − n.

Figure 5.4.: Variation of decoupling temperature Td, as a function of n and α, where we

have taken A = 1/3, Ωx = 0.7, a0 = 1 and z = 1100 to see how the two free

parameters affect the decoupling temperature.

In Fig. 5.4 we have shown the dependence of decoupling temperature on the param-
eters n and α for the VMCG model using the expression for decoupling temperature
in equation (5.31). We have calculated the values of decoupling temperatures for the
VMCG model using α = 1/4, and n = −0.1, −1.0, −2.0, and the corresponding values
are Td ≈ 3941 K, 5033 K, and 5764 K respectively. Thus we can see that the decou-
pling temperature increases with higher negative values of n for a fixed value of α in the
VMCG model.

The expression for energy density of VMCG in FRW universe can be used to determine
the Hubble parameter H = ȧ

a
as a function of redshift z. We know that for the flat FRW

universe we have
3(ȧ/a)2 = ρ, (5.32)

which gives H2 = ρ/3, and so we have

H2 = H2
0 (ρ/ρ0). (5.33)

Now using the expression for ρ(a) and changing our variable to the redshift z, we get

H(z) =H0(z + 1)n/2(1+α)

× [Ωx + (an
0 − Ωx)(1 + z)3N ]1/2(1+α). (5.34)
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Figure 5.5.: Contour plot of Hubble parameter H(z) as a function of z and n, where we

have taken H0 = 70, A = 1/3, Ωx = 0.7, a0 = 1, and α = 0.25 to see how

the free parameter n affects H(z) in the VMCG model.

In the contour plot of Fig. 5.5 we have shown how the Hubble parameter varies with
z for different values of n. We can see that for high values of z there is no significant
shift in the magnitude of the Hubble parameter for different values of n.

We can also see in Fig. 5.6 that for positive n the value of H decreases and approaches
zero, whereas for negative n (i.e. phantom dominated universe) it increases rapidly as
z approaches −1, indicating the Big rip that will occur in future. As the square of the
Hubble parameter is proportional to the energy density ρ(z), it is clear that for negative
n (thermodynamically stable condition) the energy density increases rapidly to infinity,
as it should be in a phantom dominated universe as z approaches −1.
In Fig. 5.6 and in the subsequent figures, we have included the range −1 < z < 0
(which indicates blueshift with respect to the present epoch) to show how the different
parameters of this VMCG model, like H(z), z, W (z), q(z) and v2(z), will vary in the
future, and how they will differ from each other depending on the values of the other
parameters in this model.

We can also find the redshift z when the pressure passes through the zero value
(P = 0). We substitute P = 0 in the equation of state and use the expression for ρ(a)
and substitute B0 in terms of Ωx to arrive at the following expression:

[Ωx + (1 − Ωx)(z + 1)4(1+α)−n] =
[

4(1 + α) − n

(1 + α)

]
Ωx. (5.35)

With A = 1/3, Ωx = 0.7 and setting n = 0 (for the MCG) and α = 1/4, we obtain the
redshift as z = 0.48. For nonzero values of n, we get (for P = 0) the dependence of z
on n for different values of α as shown in the Fig. 5.7.

It is evident that as we move towards more negative values of n, the value of redshift
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Figure 5.6.: Plot of the Hubble parameter H(z) as a function of z and n, where we have

taken H0 = 70, A = 1/3, Ωx = 0.7, a0 = 1, and α = 0.25 to see how the free

parameter n affects H(z) in the VMCG model.

(for P = 0) decreases very slowly. As we vary α, we can see that as it increases for a
fixed negative value of n, the value of z decreases.
Therefore, for a phantom dominated universe in the VMCG model, the redshift for dust
phase must be z < 0.48 for the chosen values of the parameter α = 0.25, whereas for
positive n there is no such bound.

We can also calculate the redshift of transition of the expansion of the universe from
deceleration to acceleration. Using the equation of state and setting the condition ä = 0,
i.e. 3P + ρ = 0, we get the following relation

[Ωx + (1 − Ωx)(z + 1)4(1+α)−n] =
[

4(1 + α) − n

2(1 + α)

]
Ωx, (5.36)

where we have assumed that A = 1/3. Now if we substitute Ωx = 0.7, α = 0.25 and
n = 0 (representing the MCG), we get z = 0.18 (for MCG). The variation of z (for
transition from deceleration to acceleration phase) as a function of n for different values
of α can also be seen in Fig. 5.8.
As we vary α, we can see that as it increases for a fixed negative value of n, the value of
z increases. From the plot it is clear that if n > 0 (i.e. the Big rip is avoided), the value
of the redshift for the flip in acceleration in the VMCG model must be z < 0.18 for the
chosen values of the parameter α = 0.25, but for negative value of n, such a conclusion
cannot be drawn.
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Figure 5.7.: Variation of the redshift z (for P = 0) as a function of n, where we have

taken A = 1/3, Ωx = 0.7, a0 = 1, α = 0.25 to see how the free parameter n

affects the redshift of the dust phase in the VMCG model.

5.3. Discussions
In this section we discuss the variation of some useful cosmological parameters of the
VMCG in terms of the redshift z, which is a parameter which can be easily measured
through observations. First we consider the equation of state (EOS) for the VMCG and
use the expression of ρ(a) to derive the equation of state parameter W(z) = P/ρ in the
form

W(z) = A − N

(1 + α)
1

[1 + ( 1
Ωx

− 1)(z + 1)3N ] . (5.37)

Analysing (5.37) we find that for high z, the EOS parameter approaches W(z) ≃ A,
and as it should correspond to the ‘Radiation-dominated phase’ of the universe, we can
safely say that A must have the value 1/3. For small z, the EOS parameter approaches
the value W(z) ≃ −1 + n

3(1+α) . As this expression explicitly depends on n, it means that
if n is negative, then W(z) < −1, which corresponds to the phantom-dominated universe
and Big rip is unavoidable, whereas for n ≥ 0, the EOS parameter becomes W(z) ≥ −1,
so that Big rip is avoided. From the plot in Fig. 5.9 we find that for different values of
n, as z increases, the value of the EOS parameter approaches 1/3, and further the plot
also shows the position where the pressure becomes zero and then negative, approaching
different negative values for different values of n. The value of the redshift for the ‘dust
phase’ (P = 0) is very close to the value of z ≃ 0.48 depending on the value of n, which
agrees with our analysis in the previous section.

It is known that the deceleration parameter q(z) is related to W(z) by the relation
[236]

q(z) = 1/2 + 3W(z)/2.
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Figure 5.8.: Variation of redshift (for ä = 0) as a function of n, where we have taken

A = 1/3, Ωx = 0.7, a0 = 1 and α = 0.25 to see how the free parameter n

affects the redshift at the time of flip in acceleration in the VMCG model.

Thus the expression for the deceleration parameter q(z) as a function of redshift z is

q(z) =1/2 + (3/2)

×
[
A − N

(1 + α)
1

[1 + ( 1
Ωx

− 1)(z + 1)3N ]

]
. (5.38)

Fig. 5.10 clearly indicates the variation of q(z) with z for different values of n. For
large z, the expression becomes q(z) ≃ 1/2 + 3A/2, which is constant, and for small z
the deceleration parameter takes the form q(z) ≃ −1 + n

2(1+α) , which again explicitly
depends on n.
This means that q(z) was constant in the radiation phase, then gradually decelerated
while passing through the dust phase and then entered the current accelerating dark
energy dominated phase. Depending on the value of n, q(z) approaches different values
for small z. For positive values of n, q(z) > −1 and for n ≤ 0, q(z) ≤ −1. From the
figure one can easily see that q(z) crosses zero (i.e. the moment of flip from deceleration
to acceleration) near z ≃ 0.18, depending on the value of n, which conforms to our
calculations in the previous section.

Similarly we can calculate the velocity of sound v2
s = (∂P/∂ρ)s. Using the equation

of state for VMCG we obtain the relation

v2
s = A + Bα

ρ(1+α) − ρ−αB0(−n)a−(n+1)

∂ρ/∂a
. (5.39)

If we calculate (∂ρ/∂a) from (5.9) and substitute it in (5.39), then we get the expression
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Figure 5.9.: Variation of EOS parameter W(z) for different values of n, where we have

taken A = 1/3, Ωx = 0.7, a0 = 1 and α = 0.25 to see how the free parameter

n affects W(z) in the VMCG model.

for the velocity of sound as a function of z:

v2
s(z) = A + (Nα/(1 + α))

[1 + (1−Ωx

Ωx
)(z + 1)3N ]

− Nn

n + (1−Ωx

Ωx
)(1 + z)3N(n + 3N)

(5.40)

From Fig. 5.11 we find that the velocity has a magnitude lying below unity and the
nature is consistent at large z, because for large value of redshift i.e., in the early phase
of the universe, the velocity was v2

s(z) ≃ A = 1/3, and then as the redshift z became
smaller, the velocity of sound increased rapidly for n < 0 (phantom dominated universe).
After that the velocity becomes imaginary.
Whereas for n > 0, as the redshift decreases, it slowly decreases and becomes negative.
For small values of z, the velocity of sound is given by

v2
s(z) ≃ −1 + n

3(1 + α) ,

which for negative n is always negative (signifying imaginary speed), and for the speed
to be real, we must have n > 3(1+ α), which is thermodynamically unstable for positive
α.
Therefore this scenario for n < 0 indicates a perturbative cosmology and favours struc-
ture formation in the universe [246]. Whereas for n = 0, the velocity approaches a
constant positive value for small values of z.
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Figure 5.10.: Variation of deceleration parameter (q(z)) for different values of n, where

we have taken A = 1/3, Ωx = 0.7, a0 = 1 and α = 0.25 to see how the free

parameter n affects q(z) in the VMCG model.

5.4. Conclusions
In this paper, we have determined the energy density of VMCG matter in a FRW universe
using a thermodynamic approach, and derived the exact expression for the temperature
T (z) and the Hubble parameter H(z) of the corresponding universe as a function of
redshift z. We have derived the redshift for the ‘dust phase’ (P = 0) and for the epoch
of transition from deceleration to acceleration (ä = 0) of the FRW universe. We have
also determined the dependence of the redshift during the different phases of expansion
of the universe on the free parameter n. Subsequently we have shown the dependence
of the equation of state parameter W(z), deceleration parameter q(z) and the velocity
of sound v2(z) on the free parameter n as a function of redshift z. We find that the
VMCG model perfectly represents the three different phases of the universe namely the
‘Radiation phase’ (P = ρ/3), the ‘dust phase’ (P = 0), and later the negative pressure
epoch dominated by the so called ‘Dark energy’. We also find that the VMCG model
with n < 0 (for thermodynamic stability) and other accepted values of the parameters,
explains the value of decoupling temperature very well.

Therefore from the above analysis we can conclude that a FRW universe filled with
thermodynamically stable variable modified Chaplygin gas not only represents the three
phases of evolution of the universe very well along with the change of expansion rate
from deceleration to acceleration, but also it shows a consistent temperature evolution
of universe.
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Figure 5.11.: Variation of velocity of sound v2
s(z) for different values of n, where we

have taken A = 1/3, Ωx = 0.7, a0 = 1 and α = 0.25 to see how the free

parameter n affects v2
s(z) in the VMCG model.

In this context we like to mention that two of the authors have also examined the
validity of the generalized second law of thermodynamics (GSLT) on the cosmological
apparent horizon (AH) and the event horizon (EH) of FRW universe dominated by
various types of Chaplygin gas fluids, one of them being the VMCG [247]. The GSLT
is always valid on the apparent horizon of the VMCG dominated FRW universe. But
for n < 0 (i.e. REH < RAH), the VMCG dominated FRW universe violates the GSLT
on the event horizon in the early phase of the universe but it holds in our current epoch
and will also hold in the future, where we know that in this range of n < 0, the VMCG
model itself is thermodynamically stable [236]. ”
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Finally in this section we will conclude our thesis and discuss an overall outlook about
the work we have done.

In the introductory portion of this thesis we introduced the basic concepts regarding
the thermodynamic studies in gravitational physics. We also highlighted the importance
of such studies as it has the potential to uncover the deeper theoretical connections be-
tween gravity and other fundamental forces. No doubt this is a very vast and important
field encompassing every fundamental aspect of gravity from spacetime structure to
black holes physics. Throughout the literature we found that thermodynamical studies
of gravity point towards the similarities between thermodynamical laws and gravita-
tional physics. In addition, it also indicates the close connection between the laws of
black hole mechanics and the generalized second law of thermodynamics (GSLT). In fact,
in a sense, these two things cannot be considered to be separate as the preservation of
the second law of thermodynamics required the introduction of the BH horizon entropy.

Interestingly, even from the perspective of information theory, the concept of entropy
is intertwined with the idea of a horizon. Speaking in simple terms, if some surface
hides some information from an observer then that observer can attach the notion of an
entropy to that surface. This idea is also applicable to BHs as no information can escape
from inside the BH, and hence, intuitively, it makes perfect sense to attach the entropy
on the BH horizon, as it is the causal horizon separating the events. Also from purview of
the equivalence principle, a similar treatment can be thought of for any Rindler horizon,
effectively subverting the uniqueness of the BH horizon and making the entropy observer
dependent. This line of investigation again puts the GSLT in a broader context, as one
can attach entropy to cosmological horizons and argue that in order to get the total
entropy of the universe one must also count the cosmological horizon entropy, effectively
generalizing the second law.

In our work we argued that the GSLT should be taken into account when consid-
ering the models of various cosmological fluid. We have concentrated our studies on
various Chaplygin gas models which have the potential to model the dark energy and
in some cases both the Dark and Baryonic matter. We have shown conclusively that
many of such models when tested against the GSLT falls short or gets restricted in
their parameter space, potentially introducing a new method to check such theoretical
models’ validity. This is very important because this can rule out various models from
the thermodynamic standpoint and if in future any conclusive model emerges from the
astronomical studies then that model can be tested in this manner to check the validity
of the GSLT itself, acting as a litmus test of both the models and the theory. This work
will also help us to model the class of Chaplygin gases or similar fluids in a far more
theoretically viable manner. To show the usefulness of the thermodynamic approach,
We have also considered one of the important variant of the Chaplygin gas, namely,
the VMCG and considered it as a cosmic fluid model for the universe. Though in this
study we did not explicitly invoke the idea of horizon but we considered the universe as
a bounded system with a volume, and then used different thermodynamical laws and
identities to arrive at the temperature profile of the universe, which showed remarkable
overall similarity with the actual temperature profile of the cosmos. This is a remark-
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able result, as the model is a crude approximation of the overall mass profile of the
universe with no nuances, but if there also we see such temperature profiles, then we can
conclude that the laws of thermodynamics are actually applicable on an universal scale
and the Chaplygin gas models are actually very good approximations for the study of
the behaviour of the universe. This temperature profile is an exact theoretical result,
which can reproduce other Chaplygin gas temperature profiles in appropriate parameter
limits and can also be used to determine different temperatures at different phases of
the cosmos, like the temperature of decoupling. In fact we have used this result to check
the entropy profile of the cosmological horizon, which differed from the result when we
used the Kodama temperature, indicating that such fluid temperature profiles cannot
be used for the horizon temperature. The primary reason for such a consequence might
be that there are unresolved issues with thermal equilibrium when we use such approxi-
mated large scale fluid models, which means that one needs to look at the cosmological
horizon more minutely and be mindful of the new physics involved there. Another rea-
son might be that such near equilibrium thermodynamic laws are not sufficient for the
dynamical nature of the cosmological horizon. Overall, the two studies on Chaplygin
gas models showed us that we should not assume thermal equilibrium between the hori-
zon and the bulk. It indicates that such approximations may only be possible when
we include the horizon dynamics when calculating bulk temperature. In such scenarios
the horizon thermodynamics should be included with the bulk thermodynamics. One
important observation that we must mention here is that during the determination of
the temperature profile we neglected the cosmological horizon. Possibly for this reason
this mismatch may have occurred. A more fundamental issue arises from this: Is there
any relation between the bulk temperature and the horizon temperature? From the BH
laws it is evident that the horizon temperature is related to the surface gravity whereas
the bulk temperature arises out of the internal energy dynamics of the matter. There-
fore if there are universal thermodynamic laws, then how should we relate these two
temperatures and how does the thermal equilibrium happen? We were confronted with
these questions and will take up the investigations in the near future.

After this we took up the issue of gravitational entropy (GE). Although there were
studies regarding GE, we found much of the areas of investigation are still unexplored.
For that reason we wanted to investigate the consequences that we are led to when we try
to generalize the study of GE to more general systems like accelerating BHs and we found
that the concept of GE is more or less applicable to these systems and in such cases the
GE also has the form of the Hawking-Bekenstein entropy. The most remarkable finding is
the appearance of the acceleration parameter in the expression of GE, indicating a deep
connection between acceleration and temperature(like the Unruh effect). This means
that, if a BH is accelerating, then its GE is different from that of a non-accelerating
BH. In other words, an accelerated observer will measure a different GE from that of a
non accelerated one. This is a very important finding because it shows the generality of
GE (BH entropy is a special case of GE) even in extreme systems like accelerating BHs.
We did similar studies on different cosmological spacetimes (representative of different
epochs of evolution of the universe) also and found in each case that the GE increases
monotonically with time and tends to zero near the cosmological singularity, which
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validated the Weyl curvature hypothesis. In this study we also showed conclusively that
the GE is directly correlated with the structure formation of the universe. The entire
investigation validated the basic ideas of GE proposed by Clifton, Ellis and Tavakol
(CET). We then tested the different GE proposals on traversable wormhole systems and
found that there also more or less the idea of GE is viable. The idea behind this study
was to check the idea that if these systems are traversable then it must have a viable
GE. We found no detailed work in this area that is why this work is the first one on a
large class of WHs. We not only studied the WH GE in great detail but also made a
comparison between two important proposals which we called the Weyl scalar proposal
and the CET proposal. The relation between gravitational temperature and the Tolman
temperature of WHs were also studied. We hope that this work will pave the way for
new investigations in this field. These studies were new, extensive and detailed, which
showed many flaws and strengths of the GE proposals. We consider these studies to be
very important in this field of research as it not only validated many ideas but also gave
us new issues to ponder upon.

One might get tempted to establish a possible relation between the thermodynamic
entropy of horizons (SH) and the gravitational entropy (Sgrav) of cosmological horizons,
but we must be careful before asserting such a claim. Let us take the simplest example
of the FLRW universe as a test case and try to find out these possible connections. On
the cosmological horizon we can employ the previously discussed Weyl scalar proposal
and find the gravitational entropy on that surface. Such considerations quickly reveal
that the GE on the surface of the cosmological horizon is zero as the FLRW spacetime
is conformally flat, therefore the rate of change of the GE is also zero amounting to a
net zero contribution of the free gravitational field to the total entropy change of that
universe. The same is true for the CET proposal, as the FLRW universe is conformally
flat, resulting in a zero gravitational energy density.

We can clearly see from this simple example that the gravitational entropy of the
cosmological horizon, irrespective of the nature of proposal, is different from the usual
horizon entropy, which is due to the energy flux crossing from the bulk under the con-
ditions near thermal equilibrium, because the gravitational entropy has nothing to do
with matter and purely comes from the free gravitational field.

Similarly, another interesting comparison can be made regarding the horizon temper-
ature. Although the temperature of the horizon cannot be deduced from the Weyl scalar
proposal, but for the FLRW case the Weyl scalar GE of the cosmological horizon is zero
anyway, and therefore the temperature is unspecified. Moving on to the CET proposal,
we find that there we obtained the gravitational temperature as: Tgrav = H/2π, for
the FLRW spacetime, which is distinct from the Kodama-Hayward temperature of the
horizon. Hence, one must not confuse between the two types of entropies studied in
this thesis. The GE of the cosmological horizon arises from the free gravitational field,
whereas the usual thermodynamic horizon entropy used in the later section of this work
is a consequence of the validity of the first law of thermodynamics on the horizon.

Let us also comment on the state of second law in the light of this topic. If we
consider the BHs, then the total entropy is Stotal = SBH + SUniv, i.e., we must consider
the BH entropy in order to have a complete picture of the generalized second law.
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Similarly when we again think of the cosmological horizons, then the total entropy must
be taken as : Stotal = SHor + SUniv. These two generalizations are somewhat similar
as in both the cases it is the horizon entropy that is being included within the usual
thermodynamic entropy. This is also very interesting to see that the proposal of GE
also suggests that the free gravitational field also carry entropy and it must be included
in the total entropy of the universe, moreover the studies on GE also indicates that the
BH entropy is a special case of GE when applied on BHs. Therefore it seems to suggest
that if we take Stotal = Sgrav + SUniv, then the inclusion of GE automatically covers
the previous two generalizations to some extent. This statement is true only if we are
to apply the definition of GE (e.g. Weyl scalar proposal) on cosmological horizons also
like BH horizon. Hence from our studies and the other viability studies of the GE, it
appears that the GSLT should be considered by taking into account the contribution of
the GE, i.e. total entropy= thermodynamic entropy + gravitational entropy, although,
more rigorous and exhaustive studies are needed on several issues before arriving at such
a conclusion definitively.
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