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Abstract

This dissertation presents a comprehensive study of fracture networks in porous media and the
polygonal patterns they form in various natural systems. Our approach utilizes a combination
of mathematical modeling, simulation, and empirical analysis. A novel four-parameter map is
introduced to characterize planar surface fracture networks, summarizing their topological and
geometrical properties. This map classifies different materials by grouping them according to
similar characteristics of their crack patterns. Columnar joint systems, crack networks in drying
colloidal materials, and salt ridge mosaics are also explored on the basis of evolving crack
patterns mapped as trajectories in a domain defined by the geometry and topology of the crack
network. The dissertation proposes empirical relations between system energy and geometric
parameters, demonstrating that many natural systems evolve toward energy minimization,
often forming Voronoi-like structures. For 3-dimensional disordered porous materials, crack
statistics and the dependence of micro-cracking behavior on elastic properties are analyzed. The
analysis reveals two distinct cracking regimes and a power-law relation between critical strains.
Additionally, the permeability of porous systems is shown to follow unique scaling relations
with the Minkowski functionals, regardless of whether the system is ordered or disordered.
These findings provide a deeper understanding of crack mechanics and material behavior across
diverse natural systems.
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Chapter 1

Introduction

Fracture is a fundamental phenomenon in various disciplines, such as materials science, ge-
omechanics, and structural engineering. It is a process of crack initiation and propagation in
materials under stress. Understanding fractures is critical for predicting the failure of structures,
optimizing resource extraction in petroleum engineering, and assessing natural hazards like
earthquakes and landslides.

1.1 Fracture Mechanics

Fractures occur when the stress applied to a material exceeds its strength, separating the material
into two or more parts. This phenomenon can be observed in both natural materials, such as
rocks and minerals, and in engineered materials like metals, ceramics, and polymers.

1.1.1 Griffith’s Theory

The systematic exploration of cracks commenced with the renowned Griffith theory[1]. This
initial investigation has blossomed into a comprehensive discipline, complete with numerous
books and reviews dedicated solely to its examination. [2–12]. When solid matter is stressed,
the inherent elasticity of the solid tries to resist deformation. However, the system is often
constrained by boundary conditions whereby it cannot release the internal strain and relax. It
may also happen that the strain relaxation mechanism is slower than the straining rate. The
plasticity of the material may be responsible for a permanent deformation in the solid, which
raises its free energy G. Whatever the cause, if the strain energy crosses a critical threshold Gc

characteristic of the solid, the solid releases the pent-up energy by creating a new surface area
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by cracking. This criteria for cracking is summed up by

G = Gc (1.1)

G
A
> 0 (1.2)

known as the Griffith criteria [1]. Here G is the total free energy, Gc is the critical strain energy
release rate, the minimum energy required to initiate cracks, and A is surface area. Equation
(1.1) defines the critical condition for cracks to initiate, and Eq. (1.2) the condition for crack
growth.

As lines of force in an elastic body must be continuous, they will go around any micro-crack
existing in the system, thus concentrating stress at crack tips [10]. The body chooses the most
efficient strain release mechanism, and the crack proceeds along its tip. The creation of a crack
releases strain energy perpendicular to the crack face, but there is an accumulation of strain
energy parallel to the crack face. Any crack in the vicinity of a pre-existing crack will turn
towards the latter and meet it perpendicularly, following the highest stain gradient.

Predicting crack path remains a research area with no clear theory. A stable path can follow
any one of the potentially available paths on changes in loading conditions. The possible paths
of crack propagation can become unstable if G = Gc is satisfied. Since the remaining paths are
still stable, they satisfy G−Gc ≤ 0. Thus, the unstable path is also the path that maximizes the
energy release rate.

The information on any changes in the loading of the material can be transmitted to a
growing crack tip, at most, at the speed of sound. A moving crack can only feed off the area
where this information reaches. In cases of dynamical fracture, e.g., directional drying or
cooling, the strain energy that is available for cracking gets modified with crack speed changes.
Where the crack advances at speeds much lower than the speed of sound, the crack advance may
be assumed to occur in a quasi-static manner. The stress gradient selects a crack tip position

where Eq. (1.1) is satisfied, but where
G
A
> 0, for Eq. (1.2) would take the advancing crack

tip to a region of lower strain energy density. If there are several equally preferable paths,
some symmetry-breaking mechanism by way of thermal noise or small-scale inhomogeneity
determines the choice of one of the paths over the others, and the crack advances along the
chosen path.

The principle of local symmetry [4, 8] suggests that crack advancement occurs along that
path where the shear stress intensity factor is zero. This theory finds support in the wavy cracks
in films that are guided by the orientation of the silicon crystal substrate [6], cracks guided by
the memory of perturbative field direction [13–15].
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1.2 Patterns of Crack Networks

Fracture patterns refer to the spatial arrangement and geometry of fractures within a material.
These patterns are influenced by several factors, including the material’s inherent properties
(e.g., brittleness, ductility), the type and magnitude of the stress applied, and environmental
conditions such as temperature and pressure. In geological formations, fractures often form
in response to tectonic forces, thermal contraction, or changes in pore pressure [16, 17].
The resulting fracture networks can vary widely, from simple, isolated cracks to complex,
interconnected systems.

Fracture patterns can be broadly categorized into two types: tensile (or mode I) fractures
and shear (or mode II and mode III) fractures. Tensile fractures are typically perpendicular
to the direction of the applied stress, while shear fractures develop at an angle to the stress
direction, allowing for relative movement of the fracture surfaces [18]. The distribution and
connectivity of fractures within a material significantly impact its mechanical properties and
fluid transport behavior [19].

1.3 Fluid Flow in Fractured Media

Fluid flow through fractured media is a complex process governed by the geometry, connectivity,
and aperture of the fractures. In geological formations, fractures often serve as primary
pathways for fluid movement, especially in low-permeability rocks where the matrix itself
offers little resistance to fluid flow [20]. This is particularly relevant in hydrogeology, petroleum
engineering, and geothermal energy extraction, where the efficiency of resource extraction
depends on the ability to predict and manage fluid flow through fractured reservoirs.

The study of fluid flow in fractured media involves understanding both single-phase and
multiphase flow behaviors. In single-phase flow, a single fluid (e.g., water) moves through
the fracture network, and the flow rate is primarily controlled by the fracture aperture and the
pressure gradient. In multiphase flow, multiple fluids (e.g., oil, water, and gas) interact within
the fracture network, leading to more complex flow patterns due to capillary forces, wettability,
and relative permeability effects [21].

Mathematical models, such as Darcy’s law and Navier Stokes equation, are often used to
describe fluid flow through porous media, but in fractured systems, these models need to be
adapted to account for the discrete nature of the fractures. Various approaches, such as the
discrete fracture network (DFN) model and the dual-porosity model, have been developed to
simulate fluid flow in fractured media more accurately [20].
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1.4 Applications and Importance

Understanding fracture patterns and fluid flow in fractured media is essential for a wide range
of applications. In the oil and gas industry, fractures play a critical role in determining the
productivity of reservoirs. For example, hydraulic fracturing, a technique used to enhance oil
and gas recovery, involves creating artificial fractures in rock formations to increase permeability
and improve fluid flow. Similarly, in geothermal energy, fractures can enhance heat transfer by
providing efficient pathways for the circulation of fluids [21].

In civil engineering, knowledge of fracture mechanics is vital for assessing the integrity
of structures and preventing catastrophic failures. Fractures can compromise the strength and
stability of materials, leading to potential hazards in buildings, bridges, and other infrastructure.
Additionally, in environmental engineering, fractures in rocks and soils can influence the
transport of contaminants, making it important to understand fracture patterns and fluid flow
for effective groundwater management and pollution control.

In conclusion, the study of fractures, fracture patterns, and fluid flow is a multidisciplinary
field that has significant implications for both natural and engineered systems. Advances in this
area continue to improve our ability to predict and manage the behavior of fractured materials,
contributing to safer infrastructure, more efficient resource extraction, and better environmental
protection.

1.5 Organization of the Thesis

The work is structured into two distinct parts: (i) investigating pattern formation due to fracture
and their topological and geometric behavior, and (ii) simulating and analyzing stress-induced
fracture and fluid flow in porous systems.

In Chapter Two, various static experimental and simulated crack patterns are analyzed
and characterized based on their topological properties, expressed as a 4-tuple (n,v,D,λ ),
where n represents the average degree of nodes, v the vertices, D the angular defect, and λ

the iso-perimetric ratio of all the polygons in the crack mosaic. The analysis reveals that the
(n,v,D) and (n,v,λ ) spaces are not uniformly dense with data points. Notably, crack patterns
generated by the Gilbert and Iterative Cell Division methods cluster together in these spaces,
while those generated by Voronoi tessellation form a separate cluster. This observation raises
a natural question: can a simulated crack pattern transition between the Gilbert and Voronoi
tessellations? To explore this, we examine dynamic systems such as the evolution of columnar
joints, mud crack patterns under repeated wetting and drying cycles, and salt playa formations,
which are discussed in the following three chapters.
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Chapter Three delves into the formation of columnar joints and the evolution of crack fronts
in their cross-sectional planes. The top surface of columnar joints initially displays random
crack networks, which gradually evolve as the lava cools. This cooling process drives the
cracks inward, guided by temperature gradients. The evolution of these crack fronts is traced in
the n,v,D and n,v,λ spaces, revealing that the changes are directed toward finding a minimum
energy configuration.

Chapter Four focuses on the evolution of mud cracks due to repeated wetting and drying
cycles. The evolution of these cracks is modeled using spring networks, and the ‘Voronoi-ness’
of the patterns is measured for each cycle. Additionally, the Voronoi characteristics of real
mud cracks and honeycombs are examined, revealing that honeycombs exhibit nearly perfect
centroidal Voronoi patterns.

Chapter Five explores the intriguing patterns formed by salt ridges on salt playas. This
chapter explains how fracture mechanics, hydrodynamics, and crystal formation and reorgani-
zation combine to produce these patterns. The dependence of crystallization time and crystal
growth on various environmental conditions is also discussed.

Chapter Six presents simulations of granular porous systems, including the generation
of porous structures and the development of fractures due to compressive mechanical stress.
The discrete element method (DEM) is employed to model the porous structure and fractures
resulting from externally applied compressive forces. This chapter also examines the statistics
of micro-cracks and their percolation behavior.

Chapter Seven investigates the flow properties in the generated granular systems, providing
insights into how permeability depends on the morphological properties, such as porosity, Euler
number, and curvature, of these complex porous structures.

Finally, Chapter Eight presents a summary of the study’s key findings and outlines potential
directions for future research.





Chapter 2

Topology and Geometry of Fracture
Networks

2.1 Introduction

Cracks come in different shapes and sizes, pervading our world in various forms, such as linear
cracks in one dimension, polygonal surface cracks in two dimensions, and even giant columnar
joints in three dimensions. They can range from micro-scale microcracks in polycrystals
to several kilometers in magnitude on the Earth’s mantle. Cracks also exhibit a ‘memory’
of past history as they emerge along lines correlated with previous stress fields the system
had experienced. Some cracks evolve over time, changing their topology and geometry and
demonstrating great sensitivity to ambient conditions [22]. The study of cracks has been an
active research area for decades due to their wide-ranging applications in engineering, industry,
art, and craft, and as a scientific challenge [23–25]. Despite their variety, there is an apparent
similarity among many crack patterns that sets them apart from others - for example, mud
cracks share a similarity different from glass or concrete cracks.

From analytical arguments, we construct a topology-geometry-allowed domain of cracks.
Crack mosaics are examined for their topological and geometrical combinatorics and repre-
sented as a point in this domain. It is expected that once a sufficiently large number of data
points are collected in this geometry-topology domain of crack patterns, the domain will aid in
identifying similarities and classifying crack patterns accordingly.

This work deals with understanding crack networks based on their topology and geometry,
exploring various natural crack systems around us, referred to as ‘experimental cracks’, and
simulated crack patterns generated using existing tiling algorithms and their variations. The
crack networks are classified based on polygonal edges, vertices, and angles to determine
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a representative point of the crack mesh. The crack peds are also examined based on the
roundedness parameter λ that measures the constituent polygonal shape in comparison to a
circle. The statistics on simulated crack networks are compared to the statistics obtained from
experimental cracks in the topology geometry space. Such comparisons act as pointers to the
understanding of crack systems in nature, drawing from the logic of simulated cracks. Together,
both the experimental and simulated crack networks represented in the topology-geometry
space, help to throw light on why crack patterns appear the way they do.

The following sections briefly introduce the basics of combinatorial topology and geometry
of convex planar tiling, followed by a discussion on simulated crack mosaics - the different
algorithms, results, and statistical quantification. Finally, a comparison of simulated and
experimental crack mosaics is done to enable the classification of crack mosaics and gain an
understanding of the underlying principles guiding cracking.

2.2 Convex Planar Mosaics

A two-dimensional (planar) mosaic is a set of compact polygonal regions that cover the
plane and intersect pairwise only at their boundaries. To avoid trivialities, these regions have
non-empty interiors. We consider convex normal planar mosaics. This means that each of
the mentioned regions is convex, and there are fixed uniform upper and lower bounds on the
diameters of the regions. Each such region is a convex polytope and, therefore, can be expressed
as a convex hull of its vertices, which makes computations much more tractable than when
convexity is broken.

Mosaics (also called tessellations) of the Euclidean plane by convex regular polygons have
been extensively studied. These can be described either in terms of the combinatorics of the
edge and vertex sets (Schläfli symbols) or in terms of the action of its symmetry group on the
domain. However, as our goal is to understand cracks occurring in nature, we will need to
include irregular (but convex) polygons.

2.2.1 Combinatorial Topology of Convex Planar Mosaics

In standard terminology used for polygonal regions, a vertex refers to each zero-dimensional
face, while a one-dimensional face is known as an edge. The places where these edges converge
are called nodes or junction points within the design. When a node has n edges connecting to
it, it is said to have a degree of n. Nodes that are connected to 0 edges are excluded from this
consideration. Furthermore, a polygon possessing v vertices is described as having a degree of
v.



2.2 Convex Planar Mosaics 9

Fig. 2.1 (a) Examples of regular nodes. (b) Examples of irregular nodes. (c) Presence of both
regular and irregular nodes. (d) A, B, and C are typical polygons in a schematic mosaic; the
nodes are marked by numbers 1 to 9, listing the nodes and vertices for every polygon, along
with categorizing the mosaic’s nodes as either regular or irregular.

Figure 2.1(d) depicts a schematic of a polygonal mosaic with highlighted polygons A, B,
and C. The junction points are numbered 1 to 9. It is important to note that all junction points
of a polygon may not form its vertices, as shown in Fig. 2.1(b). For a planar convex mosaic, we
calculate the average values, denoted as n and v, of the degrees n and v across the entire mosaic.
In the case of an infinite mosaic covering an infinite area of the plane, we consider the limits of
these average degrees over planar disks with a radius approaching infinity. Additionally, a node
is considered regular if it serves as the vertex of each cell it lies on, as illustrated in Fig. 2.1(a)
and (c). If a node does not meet this criterion, it is termed an irregular node of the mosaic. The
regularity index p of the mosaic is determined by the ratio of regular nodes to the total number
of nodes in the mosaic.

Figure 2.1(d) showcases a diagram featuring a polygonal mosaic with polygons A, B, and
C emphasized. The nodes in the mosaic are labeled from 1 to 9. It is important to understand
that not all nodes of a polygon necessarily correspond to its vertex, as illustrated in Fig. 2.1(b).
When analyzing a convex planar mosaic, we assess the average degree values, labeled as n and
v, for the degrees n and v throughout the mosaic. In the case of an infinite mosaic covering an
infinite area of the plane, we consider the limits of these average degrees over planar disks with
a radius approaching infinity. Furthermore, a node is deemed regular only if it acts as a vertex
for every polygon it is part of, as shown in Fig.2.1(a) and (c). Any node failing to meet this
criterion is classified as an irregular node in the mosaic. The proportion of regular nodes to the
overall node count in the mosaic gives us the regularity index, denoted as p.
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Every convex normal mosaic resides within a bounded combinatorial area on the (n,v)
plane. As all polygonal cells of a mosaic have at least three sides, it is clear that v ≥ 3. To see
the effect of the fraction of regularity, p, we compute the average internal angle of vertices of
polygons at a node and compare this for both regular and irregular nodes. This relationship is
computed as

p+1
n

+
2
v
= 1 (2.1)

This introduces a natural combinatorial categorization of mosaics based on their p-regularity,
known as iso-p lines. Two distinct natural combinatorial curved boundaries within the (n,v)
domain are created for the cases when p = 0 and p = 1. The final boundary of v ≤ 2n is
obtained by noting the effect of the fraction of regularity on the degree of a node and the
maximum possible value of

v
2n

coming from the above iso-p lines. Figure 2.2(a) shows the
allowed domains of infinite convex planar mosaics.

Fig. 2.2 (a) The allowed (n,v) domain of infinite convex planar mosaics, (b) Angular defect
D is 1 for regular polygons and D decreases from 1 towards 0 as the polygons deviate from
the regular one. (c) For a circle, λ = 1; and λ decreases from 1 towards 0 as the polygonal
structures transform from shapes that are comparatively circular to needle-like forms.

The above analysis assumes that the mosaic is infinite and that the average values n and
v come as limits over increasing disks. However, all mosaics encountered in the real world
are constructed from images of finite systems. Therefore, representative points of mosaics of
physical systems in the (n,v) domain have an inherent error from finite boundary effects. This
error can be minimized if the fraction of boundary nodes is small.
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2.2.2 Angular Defect D and the (n,v,D) Space

To further distinguish natural cracks, we introduce a measure of the geometric regularity of
a mosaic in the form of its non-dimensionalized ‘angular defect’. For the Nth polygon, the
‘angular defect’ DN is defined as

DN =
1

∑
vN
i=1|θi − (vN−2)π

vN
|+1

(2.2)

The variable vN signifies the total vertices of the polygon labeled as the N-th. To quantify the
geometric regularity across the entire mosaic structure, we employ the formula

D =
∑

M
i=1 Di

M
(2.3)

where M denotes the overall number of polygons (also referred to as cells) within the mosaic.
According to this formulation, both measures DN and D naturally fall within the range of 0 to
1.

Integrating the combinatorial and geometric descriptions, we establish a unified (n,v,D)

framework for the complete classification of planar mosaics. This framework outlines a concise
three-dimensional space that encompasses all possible configurations of convex planar mosaics.

2.2.3 Isoperimetric Ratio λ and the (n,v,λ ) Space

The classical isoperimetric inequality [26] asserts that for any simple, closed curve lying on a
plane, if the curve’s length is denoted by L and it encloses an area A, then the inequality L2 ≥
4πA must always hold true. Stemming from this, the concept of the ‘normalized isoperimetric

ratio’ is introduced, symbolized by λ =
4πA
L2 . This ratio is crucial for identifying various types

of natural crack patterns.
This normalized isoperimetric ratio, a dimensionless measure, plays a significant role in

classifying and describing the shapes that make up the networks of cracks. For example, a circle

has a λ value of 1, while a regular polygon with n sides has a λ value described by λ =
π

n
tan(π

n )
,

an expression that grows with n and approaches 1. Therefore, as the shapes within the crack
network transition from more round to elongated, the λ value decreases from 1 towards 0.

In exploring the angular defect for the Nth polygon, one computes its specific λN , and
thereafter, the overall λ for the network is calculated as the average of these individual values,
following the formula:

λ =
∑

M
i=1 λi

M
(2.4)
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where M is the total number of polygons (cells) in the mosaic. The space defined by three
dimensions (n,v,λ ) facilitates a detailed quantitative narrative of the crack mosaics that could
occur, augmenting the previously described space of (n,v,D).

2.2.4 The Parameter Space of Quadruples (n,v,D,λ )

Moving forward, every crack mosaic, whether real or simulated, will be represented by quadru-
ples (n,v,D,λ ) within a specific subset of R4. As explored in Sec. 2.2.1, the relationship
between n and v is governed by Eq. (2.1). Thus, with n and p given, v can be determined,
although there may be errors due to non-convexity and boundary effects.

Since this work primarily focuses on the low-dimensional categorization and graphical
depiction of crack networks, examining them through their topological and geometric charac-
teristics, the crack mosaics are projected onto two distinct 3-dimensional frameworks – one
defined by the coordinates (n,v,D) and the other by (n,v,λ ).

2.3 Geometric Simulations of Cracks

Different tiling algorithms and their variations can be used to simulate crack networks. Each
crack mosaic is analyzed to determine the average number of nodes (n), the average number of
vertices (v), and the average angular defect (D) of the constituent polygons. These values are
then plotted as a representative point in the (n,v,D) space and further analyzed and compared
using characteristic topological and geometrical descriptors such as angular defect DN , crack
length, tile area, and the polygonal roundedness measure λ . Statistical data from simulated
crack networks can be compared to data from real cracks regarding their position in the topology
geometry space. These comparative studies can provide insights into understanding crack
systems in nature. The findings from the generated and analyzed simulated crack networks are
presented in this work.

2.3.1 Gilbert Tessellation and Its Variations

The Gilbert tessellation begins by selecting a group of points as initial seeds. Subsequently,
lines are drawn from these points, extending in both directions until they encounter either
another line or a boundary. Various alternatives are explored, as mentioned below. These lines
are interpreted as cracks, leading to the formation of angular, extended, polygonal shapes that
resemble the patterns observed in broken glass. The flowchart outlining the generation of a
Gilbert mosaic is described below.
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Algorithm 1
1: Cracks are initiated at random points (seeds) throughout the plane.
2: The cracks are allowed to grow simultaneously from all the seeds.
3: From every seed, the cracks grow in two opposite directions along a straight line with a

slope that is chosen randomly from a uniform distribution.
4: A crack stops growing when it collides with another crack.
5: If two growing crack tips collide, only one chosen randomly will continue to grow.

The basic algorithm has been implemented in various forms. These variations involve
modifications to the distribution function of the random seeds on the plane and the selection of
crack slope in relation to reference axes. Four different crack slope choices were examined for
each seed distribution:

(a) Selection between 0◦ and 180◦ at random.

(b) Slopes parallel to reference axes, i.e., 0◦ or 90◦.

(c) Random selection of slopes from 0◦, 45◦, and 90◦.

(d) Random determination of slope between 0◦±10◦ and 90◦±10◦.

Uniform Distribution of Crack Seeds

Figure 2.3 presents the results for a uniform distribution of crack seeds on a 2-dimensional
30×30 plane, structured into a 4×5 matrix. The rows of the matrix give information on each
of the 4 combinations of slopes taken for the Gilbert tessellated crack mosaics having uniform
seed distribution. For each variation of the crack pattern, the five columns display (1) the visual
pattern of the crack formation, (2) a histogram detailing the distribution of angular defects
DN , (3) a histogram showing the distribution of the number of vertices for the polygons within
the mosaic, (4) a histogram representing the variation in crack lengths, and (5) a histogram
outlining the area distribution of the tiles or polygons produced.

In our analysis of the second column in the matrix figure, intriguing observations emerge
regarding the nature of crack mosaics:
a) Cracks possessing random slopes exhibit a log-normal distribution for DN , with an average
value of about 0.325. This suggests a dominant presence of irregular polygons.
b) Cracks oriented at 0◦ or 90◦ take on perfect rectangular shapes, illustrating the captivating
symmetrical arrangements they form.
c) Incorporating one-third of the slopes at 45◦ introduces a significant quantity of irregular
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Fig. 2.3 The 4×5 matrix illustrates the Gilbert tessellation with a uniform seed distribution.
The first four rows represent different selections of crack slopes: (1) random angles between 0◦

and 180◦, (2) slopes aligned with the reference axes at 0◦ or 90◦, (3) randomly chosen slopes
from 0◦, 45◦, and 90◦, and (4) randomly selected slopes within 0◦±10◦ or 90◦±10◦. The five
columns display: (1) the crack mosaic, (2) the angular defect DN histogram, (3) the histogram
of the number of vertices in the polygons, (4) the crack length histogram, and (5) the polygon
area histogram.

polygons. This change diversifies the mosaic with elements of randomness and variety.
d) Slopes within 0◦±10◦ and 90◦±10◦ lead to an interesting division in the histogram, showing
pronounced peaks near 0.36 and 0.7.

The histogram for the vertices showcased in column 3 of the matrix in Fig. 2.3 reveals
that quadrilaterals dominate the distribution of polygons, with notable quantities of triangles,
pentagons, and a small presence of hexagons, regardless of choice (b) concerning the slopes.
Furthermore, the histogram detailing the lengths of cracks in column 3 of Fig. 2.3 shows a
log-normal distribution across all slope combinations investigated, featuring a nearly consistent
shape parameter of σ ≈ 0.49 and a median value fluctuation around 7% near 2.82. It is also
important to mention that the surface area of polygons within the four crack mosaics adheres to
an exponential decay model described by ae−bx, where a ≈ 394.8 and b ≈ 408. Examination of
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the elements in Fig. 2.3 indicates that the variation in the slope of cracks for Gilbert tessellation
is most noticeable in the shape of the polygons rather than their sizes.

Normal Distribution of Seeds

The image shown in Fig. 2.4 illustrates the outcomes for normally distributed crack seeds
across a two-dimensional 30×30 plane, organized into a 4×5 matrix. Every feature of the
mosaics analyzed under this normal distribution is encapsulated within the elements of the
matrix, adhering to the format previously seen in Fig. 2.3. Column 1 of the matrix in Fig.

0.5 1.0
0

500

5.0 7.5
0

5000

0 2
0

500

0.0 0.2
0

1000

0.5 1.0
0

5000

3.5 4.0 4.5
0

10000

0 2
0

500

0.0 0.2
0

1000

0.5 1.0
0

2500

4 6
0

5000

0 2
0

500

0.0 0.2
0

1000

0.5 1.0

DN

0

500

4 6

vN

0

5000

0 2

Crack length

0

500

0.0 0.2

Area

0

1000

Fig. 2.4 The 4× 5 matrix illustrates the Gilbert tessellation with a normal seed distribution.
Rows 1 to 4 correspond to four different selections of crack slopes: (1) random angles between
0◦ and 180◦, (2) slopes aligned with the reference axes at 0◦ or 90◦, (3) randomly chosen
slopes from 0◦, 45◦, and 90◦, and (4) randomly selected slopes within 0◦±10◦ and 90◦±10◦.
Columns 1 to 5 display: (1) the crack mosaic, (2) the angular defect DN histogram, (3) the
polygon vertex count histogram, (4) the crack length histogram, and (5) the polygon area
histogram.

2.4 clearly reveals a clustering of smaller polygons around the system’s central region, as
anticipated. Analysis of the other matrix elements shows that altering the seed distribution
of the cracks on the plane does not result in significant changes in the histogram patterns of
the angular defect, polygon vertices, crack length, or polygon area. Both the crack length and
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polygon area distributions exhibit log-normal and exponentially decaying behaviors, similar
to the uniform seed distribution. However, the shape parameter and median values for the
log-normal distribution of crack lengths suggest narrower distributions, which is also reflected
by smaller values in the parameters governing the exponential decay of polygon areas.

(a) (b)

Fig. 2.5 The Gilbert tessellation with time-delayed crack initiation features: (a) a uniform
distribution of initial cracks, and (b) a normal distribution of initial cracks.

A different version of the Gilbert tessellation was conducted, in which the initiation of
cracks was sequentially offset by a predetermined delay among various seeds. The mosaic
design resulting from both uniform and normal distributions of crack seeds is illustrated in Fig.
2.5. When comparing these images with the components of the figure matrices in Figs. 2.3
and 2.4, there appears to be no noticeable variation in the patterns. An animation of the Gilbert
tessellation process is available in Ref. [27].

2.3.2 Voronoi Tessellation

Voronoi tessellation was simulated using the Python class ‘Voronoi’. The Python class ‘Voronoi’
in ‘scipy.spatial’ uses the Qhull library to find the Voronoi diagram. Qhull computes the
Delaunay triangulation of the given input seeds by computing a convex hull using the Quickhull
algorithm [28]. The circumcenters of the Delaunay triangles represent the Voronoi vertices.

The Voronoi mosaic effectively divides the system into polygonal regions closest to the
seed that causes the crack polygon, much like the Wigner-Seitz unit cell description in crystal-
lography. Figure 2.6 presents a matrix visualization of Voronoi tessellation, employing crack
seeds that are uniformly and normally distributed, as depicted in the first and second rows,
respectively. The pattern of crack seeds following a normal distribution leads to increasingly
smaller crack fragments clustering towards the center of the system, as shown in the first
column. Columns 2 to 4 illustrate histograms related to the angular defect, the area of the
polygons, and the number of vertices for each polygon, respectively. The histogram for DN
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Fig. 2.6 The 2×4 matrix represents a Voronoi tessellation. Rows 1 and 2 correspond to uniform
and normal seed distributions on the plane, respectively. Columns 1 to 4 display: (1) the crack
mosaic, (2) the histogram of the angular defect DN , (3) the histogram of polygon/tile areas (in
arbitrary units), and (4) the histogram of the number of vertices for the polygons in the mosaic.

illustrates a log-normal distribution observed in both the normal and uniform cases of the
Voronoi tessellation, with the median value slightly more inclined towards lower numbers in
the normal distribution compared to the uniform one. Further analysis of the third column in
the figure matrix Fig. 2.6 indicates that the normal Voronoi tessellation exhibits a log-normal
distribution for the areas of the polygons, which is noticeably more condensed and with an
extended tail when compared to that of the uniform Voronoi distribution. Examination of
column 1 reveals that in the case of normal seed distribution, the larger polygons are roughly
confined to the boundary of the system and are much fewer in number in comparison to the
‘smaller’ polygons that occupy the greater part of the plane. The contrast between the sizes of
the peripheral polygons and the central polygons is sharp enough to be discernible with the
more smaller and uniform peds clustered in the central region. Together, these features are
responsible for the sharp decay in the area distribution. In comparison, the polygons obtained
with a uniform seed distribution have a broader histogram in area distribution with a more
gentle decay. Here, the Voronoi tessellation differs significantly from the Gilbert tessellation,
where an exponential decaying distribution was obtained for polygonal area statistics.

In Fig. 2.6, histograms are displayed showing the number of vertices per polygon for two
different Voronoi mosaics. The distribution curve of vN follows a log-normal pattern and is quite
similar for both mosaics. In the case of Gilbert tessellation, the nature of the distribution of vN

was also similar, but there are significant differences in the parameters defining the distribution.
In Voronoi tessellation, there are a maximum number of hexagons with a significant number of
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pentagons and heptagons, unlike in Gilbert tessellation, where the peak of the distribution was
at 4 with a significant number of triangles and a smaller number of pentagons.

2.3.3 Iterative Cell Division

The flow chart for the Iterative Cell Division algorithm for crack mosaic simulation is outlined
below.

Algorithm 2
1: Choose any two sides of a polygon randomly.
2: Randomly select a point on each of the two sides chosen in the previous step.
3: Connect the two points chosen in the previous step with a straight line.
4: Repeat the process from the first step as many times as desired.

Figures 2.7 (a), (b), and (c) illustrate the progression of crack mosaic formation after the
1st, 4th, and 8th rounds of iteration, in accordance with the previously mentioned algorithm.
New cracks are represented by dashed lines. Additionally, various histograms detailing angular
defect, polygon area, vertices per polygon, and crack length, based on the pattern formed at the
10th iteration, are presented in Figs. 2.8 (a), (b), (c), and (d), respectively.

(a) (b) (c)

Fig. 2.7 Crack mosaic generated through iterative cell division. Images (a), (b), and (c)
correspond to the results after the 1st , 4th, and 8th iterations, respectively. The newest cracks
are highlighted with broken lines.

The histogram of angular defects shows a sharp double peak, indicating that the polygons
are highly irregular. The histogram of polygon areas peaks at a small value, suggesting that
very narrow crack polygons are generated using this algorithm, which is also evident from Fig.
2.8(c). The histogram of the number of vertices per polygon indicates that most polygons are
triangles, with a nearly equal number of quadrilaterals. The number of pentagons and hexagons
decreases rapidly in the distribution. The histogram of crack lengths shows a sharply decaying
curve, although it is not exactly exponential in nature.



2.4 Real Crack Mosaics 19

0.00 0.25 0.50 0.75
DN

0

2000

4000 (a)

0.0 0.2 0.4
Area

0

5000

10000

15000

20000

0.000 0.001
0

2000

4000 (b)

2.5 5.0 7.5
vN

0

2000

4000

6000

8000 (c)

0 2 4
Crack length

0

2000

4000

6000
(d)

Fig. 2.8 Measures of Crack Mosaic using Iterative Cell Division after 10th iteration (a) His-
togram of the angular defect DN (b) Histogram of polygon/ tile area (c) Histogram of the
number of vertices per polygon in the mosaic (d) Histogram of crack length.

2.4 Real Crack Mosaics

Investigation and classification of crack mosaics from various physical systems are conducted
based on their topological and geometrical features. This serves two main purposes: to
determine if cracks of similar materials, cracking modes, or forcing mechanisms form distinct
clusters in a specific space and to compare actual crack formations with the simulated crack
mosaics. Meticulous checks and balances are essential for determining (n,v,D,λ ) data from
physical system mosaics. To do this, a crack skeleton is extracted from images using algorithms
and suitable processing techniques. The algorithm involves identifying nodes, polygons,
and crack vertices and dealing with convex and non-convex polygons as needed. The process
involves image thresholding, crack skeleton extraction, node identification, and polygon tagging.
The identification of vertices in crack mosaics is a non-trivial issue, and it requires determining
the convexity of polygons using the gift-wrapping algorithm [29].
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2.5 Mapping the Topology of Simulated and Real Cracks on
the (n,v) Plane

The average values of n and v for the entire mosaic are calculated by assessing the nodes
and vertices of each polygon. Figure 2.9 illustrates the coordinates of all the simulated and
experimental crack mosaics examined. Iso-p lines at values of 0.5 and 0.3 are drawn to help
visualize the fraction of regular nodes in these crack patterns. Since natural crack mosaics tend
to be irregular, the data points predominantly cluster between p = 0.3 and p = 0.5. Despite the
inclusion of various materials in the study, such as natural mud, clays like bentonite, synthetic
clays like laponite, corn starch, resin, glass, and metal oxide films, the data points remain
concentrated within a small region of the parameter space. This suggests that n and v alone may
not be sufficient to reveal clusters of similar materials through crack pattern analysis, given the
wide variation in physical and chemical properties. Therefore, more refined measures might be
needed to distinguish between distinct crack clusters.
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Fig. 2.9 The (n,v) data for real and simulated crack mosaics, with iso-p lines at p = 0.3 and
p = 0.5 included as visual guides.
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2.6 Features of the Crack Mosaics on the (n,v,D,λ ) Space

The various simulations of crack mosaics exhibit distinct differences in their geometric charac-
teristics. To compare these features with those of experimentally observed cracks, the average
geometric properties are plotted in the (n,v,D) space, as shown in Fig. 2.10(a).

All data points fall within the analytically defined allowed space. Most of the simulated
crack mosaics cluster around n = 2 and v = 3.5, with the exception of the Voronoi mosaic,
where n = 3 and v = 5.9. Both the Voronoi and Iterative Cell divisions have D values close to
0.2, indicating a high degree of irregularity in the polygons. Variants of the Gilbert tessellation
exhibit D values clustering around 0.5.

A histogram of λ for the Gilbert and Voronoi tessellations is shown in Fig. 2.11, with a
noticeably different distribution across the simulation variants. This provides insights into
the shape distribution of polygons within the mosaic. In the case of Gilbert tessellation, the
polygon shapes largely depend on the angle between a growing crack and a reference line, as
illustrated in Figs. 2.11(a-d), showing a wide dispersion of shapes.

For the Iterative Cell division algorithm, the isoperimetric ratio λ , assessed at various
stages, reveals that the polygons become more elongated at higher stages, with λ decreasing
linearly with the order number [see Fig. 2.13(a)]. A histogram of λ for the 10th order, shown
in Fig. 2.13(b), demonstrates that most polygons exhibit highly elongated shapes.

Given that most simulation points cluster around the n ∼ 3 and v ∼ 4 region – except for
the Voronoi tessellation at n ∼ 3 and v ∼ 6 – a two-dimensional variation of the four-parameter
phase space is constructed using (n,v,D) and (n,v,λ ) data [see Figs. 2.10(b) and (d)]. These
figures zoom in on the data points, spacing them along the vertical axis, which prominently
highlights the variation in D and λ values.

Table 2.1 lists the topological combinatorics and geometrical information of the simulated
and real crack systems.

2.7 Comparison Between Physical and Simulated Mosaics

Exploring the similarities between simulated and real-world crack patterns opens up an in-
sightful analysis. The visual representation in Fig. 2.10 juxtaposes (n,v,D) and (n,v,λ ) data
for both experimental and simulated crack mosaics, offering a unified perspective. A notable
observation is that, with the exception of Voronoi simulations, the (n,v) values for simulated
cracks hover around (2,4), aligning closely with the experimental data for all types of crack
mosaics barring mud. On the other hand, mud crack mosaics share their (n,v) values of
approximately (3,6) with Voronoi simulations. Delving deeper, Figs. 2.10(b) and (d) focus on
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Table 2.1 Measures of simulated and real crack mosaics

Model n v D λ

Randomly oriented cracks 1.962 3.984 0.363 0.482

Uniform Parallel cracks 1.941 4.0 1.0 0.403
seed Cracks at 0°, 45°and 90° 1.958 3.99 0.420 0.476

Gilbert

distribution Cracks orientations in between (-
10°– +10°) and (80°–100°)

1.954 3.987 0.542 0.422

Randomly oriented cracks 1.946 3.968 0.361 0.477
Normal Parallel cracks 1.891 4.0 1.0 0.405

seed Cracks at 0°, 45°and 90° 1.929 3.976 0.419 0.476
distribution Cracks orientations in between (-

10°– +10°) and (80°–100°)
1.918 3.965 0.524 0.402

Voronoi
Uniform seed distribution 3.0 5.884 0.319 0.683

Normal seed distribution 3.0 5.935 0.325 0.714

Iteration order

6 2.0 4.0 0.246 0.235
7 2.0 4.0 0.230 0.207

Iterative 8 2.0 4.0 0.218 0.167
Cell Division 9 2.0 4.0 0.211 0.146

10 2.0 4.0 0.202 0.128
11 2.0 4.0 0.200 0.124
12 2.0 4.0 0.192 0.103

Bentonite 2.442 4.479 0.463 0.739
Laponite (pH 10) 2.333 4.136 0.483 0.579
Laponite (pH 13) 2.048 4.0 0.415 0.618
Laponite (pH 14.4) 2.410 4.093 0.484 0.625
Laponite (pH 6.7) 2.411 4.353 0.467 0.647
Corn starch 2.5 4.16 0.466 0.674
Potato starch 2.606 4.411 0.425 0.554
PDMS - 1 2.731 4.569 0.428 0.618
PDMS - 2 2.644 4.438 0.445 0.587
PDMS - 3 2.477 4.212 0.453 0.612

Real cracks TiO2 (primary) 2.025 3.9 0.415 0.513
TiO2 (secondary) 2.419 3.794 0.461 0.497
Tempered glass - 1 2.208 4.276 0.416 0.547
Tempered glass - 2 2.309 4.141 0.428 0.548
Resin - 1 2.284 4.868 0.410 0.789
Resin - 2 2.063 4.482 0.370 0.657
Resin - 3 2.236 4.472 0.393 0.675
Mud 2.870 5.42 0.387 0.774
Columnar joints 3.0 5.833 - -
Salt Playa 3.0 5.926 - -
Permafrost 3.0 5.733 - -
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Fig. 2.10 (a1) (n,v,D) data of real and simulated crack mosaics. (a2) Zoomed-in view of
(n,v,D) data. (c1) (n,v,λ ) data of real and simulated crack mosaics. (c2) Zoomed-in view of
(n,v,λ ) data. (b) Legends for (a1) and (a2) and (d) legends for (c1) and (c2)

the geometric metrics D and λ for both experimental and simulated cracks. By averaging data
for similar materials, each material type is condensed into a singular data point in these figures.
This approach yields two significant outcomes: firstly, it resolves the seeming overlap in (n,v)
measures by distinctly locating different material types in the 4-parameter space; secondly,
it hints at the possibility of matching experimental cracks with certain Gilbert tessellations.
Among the geometric measures analyzed, the isoperimetric ratio λ emerges as a particularly
effective tool in differentiating crack mosaics.
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Fig. 2.11 Histogram of isoperimetric ratio λ for simulated crack mosaics: (a) Gilbert tessella-
tions with random slopes, (b) slopes at 0◦ and 90◦, (c) slopes at 0◦, 45◦, and 90◦, (d) slopes at
0◦±10◦ and 90◦±10◦. For Voronoi tessellations, (e) uniform seed distribution, and (f) normal
seed distribution. The average values of the λ parameter are presented in Tab. 2.1.

Fig. 2.12 Histogram of isoperimetric ratio λ for real crack mosaics of: (a) TiO2, (b) PDMS, (c)
Laponite (pH 6.73), (d) Laponite (pH 13.45), (e) Tempered Glass, (f) Resin, (g) Corn starch,
and (h) Mud cracks.

The aim of contrasting topological and geometrical analytics between natural crack forma-
tions and their simulated equivalents is to shed light on the underlying processes of natural
cracking. The isoperimetric ratio λ for a selection of natural crack mosaics is showcased in
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Fig. 2.13 (a) Variation of isoperimetric ratio λ across different iteration stages in the cell
division method. (b) Histogram of λ at the 10th iteration step.

Fig. 2.12, which when compared to the simulated crack λ values in Fig. 2.11, indicates that
materials such as TiO2, PDMS, and Laponite at pH = 6.73 exhibit a similar λ distribution to
that found in Fig. 2.11(a), suggesting a Gilbert tessellation pattern with variable slopes. Con-
versely, Laponite at pH = 13.45 presents a λ distribution more akin to a strict Gilbert pattern
with crack angles fixed at 45 and 90 degrees, as depicted in Fig. 2.11(c), while accounting for
natural variances. Similarly, the λ distributions for tempered glass [see Fig. 2.12(e)] closely
mirror the dual-mode Gilbert tessellation observed in Fig. 2.11(d) with slopes concentrated
around 0±10, and 90±10 degrees. Additionally, the λ distributions for crack mosaics made
of resin, corn starch, and mud [see Figs. 2.12(f), (g), and (h)] are comparable to those seen in
Voronoi mosaics [see Figs. 2.11(e) and (f)], suggesting a shared developmental algorithm with
their simulated counterparts. Interestingly, uniformly desiccating systems, which form cracks
analogous to the Gilbert algorithm’s logic, further underscore this point.

Experimental research further corroborates that corn starch matures into columnar joints
exhibiting transverse Voronoi tessellations; similarly, natural mud cracks undergo a cycle of
wetting and drying, leading to Voronoi patterns, indicating that Voronoi tessellation principles
are at play in these natural phenomena.

2.8 Discussion

In this study, the formation of crack mosaics across a variety of materials – including natural
mud, clay types such as laponite and bentonite, starches derived from corn and potato, polymers
like PDMS, films of metal oxide, and both glass and resins – has been investigated. The aim
was to categorize these crack patterns by identifying significant shared features, linking them
with the materials they appeared on, and pinpointing the physical, chemical, or geological
mechanisms behind their creation. The focus was on determining whether materials that share
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certain characteristics, like molecular bonding types and physical or rheological attributes,
also exhibit similar patterns of cracking. To achieve this, methods from planar convex tiling
and combinatorial topology were used to describe and sort the diverse types of crack mosaics.
Ideally, a comprehensive dataset covering a wide range of materials and multiple datasets would
facilitate the development of a robust four-parameter phase space. This statistical approach
could then assist in determining the material of origin based on crack patterns.

The geometrical and topological aspects of the crack mosaics were quantitatively analyzed
and organized into a four-parameter phase space. This quartet (n,v,D,λ ) acts as a concise
signature for any given crack mosaic. Here, the topological variables v and n account for
the cells within the mosaic and their connections to adjacent cells, whereas the geometric
variables D and λ detail the cells’ shapes. These parameters are graphically represented
through two three-dimensional spaces: (n,v,D) and (n,v,λ ), effectively differentiating between
crack patterns from various materials and models. It is vital to recognize the influence of
environmental conditions on crack development, which introduces variability to patterns of
similar materials. Previous research by Domokos et al. [30] suggested that fractures and
cracks in geological systems largely fall into either ‘Platonic’ or ‘Voronoi’ categories, albeit
without a solid theoretical explanation. Our research demonstrates that, by focusing on the
combinatorial (n,v) topology alone, crack mosaics from beyond geological contexts can also
be approximately sorted into these categories. We discovered that crack mosaics pertaining
to different classes of materials tend to cluster within the four-parameter phase space. This
indicates a correlation between materials’ physical and chemical properties and their resulting
crack geometries. Similar analyses on simulated crack mosaics show that the (n,v) data for
Gilbert cracks consistently approaches ∼ (2,4) across different versions of the algorithm.

2.9 Conclusions

The study analyzes crack statistics and examines crack mosaics that have reached an equilibrium
state. It demonstrates that accurate measures of the geometry and topology of crack mosaics
can effectively differentiate between crack systems based on crack mechanisms and intrinsic
material properties. However, distinguishing between crack mosaics cannot rely solely on their
topological combinatorial values (n,v). For precise identification, it is essential to consider the
geometrical features of the polygonal mosaics.

A comprehensive quantitative analysis of the average geometrical and topological charac-
teristics of crack mosaics is encapsulated in a four-parameter set (n,v,D,λ ). This quartet of
parameters serves as a compact signature that defines the essence of a crack mosaic. The study
identifies two distinct three-dimensional realms, defined by the spaces (n,v,D) and (n,v,λ ),
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which effectively illustrate the differentiation of crack patterns based on underlying materials
and theoretical models. Materials with similar physical and chemical properties often exhibit
comparable crack geometries. Significant differences in the mean values of D and λ have been
observed across various materials.

Custom codes have been developed to accurately calculate the topological and geometrical
properties of non-convex polygons interwoven with convex polygons within a mosaic, ensuring
the preservation of the original geometrical and topological features. Naturally occurring
cracks tend to exhibit characteristics similar to Gilbert models, with a notable tendency to
form T-junctions. Simulations suggest that the crack mechanisms, rather than specific material
characteristics, determine whether the resulting crack mosaics resemble Gilbert or Voronoi
patterns.

The study identifies two main topological regions, referred to as the ‘Platonic attractor’
and the ‘Voronoi attractor.’ When geometric factors of the crack mosaics are considered,
data points in these regions become dispersed. Some crack mosaics initially aligned with the
‘Platonic attractor’ transition to the ‘Voronoi attractor’ in the equilibrium state. Investigating
the trajectory of this evolutionary process in the context of the topology-geometry architecture
presents an intriguing avenue for further study.

The upcoming three chapters will explore specific dynamical systems, such as columnar
joints, repeated wetting and drying of mud, and salt playas, to further elucidate these concepts.





Chapter 3

Columnar Joints

3.1 Introduction

In the previous chapter (Chapter 2), we examined various real crack mosaics of different
materials alongside several variations of simulated crack mosaics. It was noted that, from a
topological perspective, crack mosaics generally fall into two categories: Gilbert or Voronoi
cracks. When exploring the mathematically allowed space of (n,v,D,λ ), we observed that real
crack meshes predominantly cluster around the Gilbert crack representative point. In contrast,
only a few crack mosaic points are situated near the Voronoi crack descriptor, leaving much of
the allowed domain space devoid of real crack mosaic instances. While columnar joints initiate
as Gilbert cracks and mature into Voronoi cracks, the detailed trajectory of their evolution
through the (n,v,D,λ ) space remains to be fully mapped.

Columnar joints represent a unique crack system where the role of the interface is crucial.
Crack formation inherently involves the creation of new interfaces, as seen in common examples
like desiccation cracks in drying films or slurries, which typically manifest as two-dimensional
mosaics [31]. In these cases, the new surfaces form primarily in the third dimension (thickness),
which is minimal compared to the lateral dimensions of the pattern. A particularly striking
and distinct example of crack formation occurs in the phenomenon of columnar joints [32].
Unlike everyday cracks, columnar joints form column-like structures as molten volcanic lava
cools and fractures under specific thermal and elastic conditions. These cracks propagate down-
ward, creating long vertical columns with polygonal cross-sections, resulting in a fascinating
geological formation.

Most natural crack networks, regardless of the material type, consist of tightly packed
polygons that converge at T-junctions. This pattern is expected because new cracks tend to
intersect existing cracks perpendicularly, efficiently dissipating in-plane stress. However, the
remarkable columnar joints found in formations like Giant’s Causeway in Ireland and Devil’s
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Fig. 3.1 Columnar joint in Tsumekisaki Izu, Japan. Photo credit: hide. S [39]

Postpile in California feature Y-junction intersections within pentagonal and hexagonal cross-
sectional patterns [32]. These three-dimensional structures originate as random crack patterns
on the surface of cooling lava, which extend downward and gradually segregate the rock into
vertical columns. As the columns deepen, they stabilize into Y-junction formations. Similar
patterns have been observed on a smaller scale in drying starch slurry columns [33].

Gauthier et al. [34] investigated the transition from T-junctions to Y-junctions in crack
systems, showing through laboratory experiments that varying cooling rates can produce star-
shaped cracks at 90◦ or 120◦ angles. Over time and across different length scales, hexagonal
columnar patterns develop, ranging from tens of centimeters in laboratory conditions to several
meters in natural formations such as Giant’s Causeway [32] and the Genbudo caves in Japan
[see Fig. 3.3(b)]. These patterns may undergo repeated cycles of healing and re-cracking
over various time scales, as noted by Goehring [35]. The transformation from T-junction to
Y-junction fracture systems [34, 35] implies a reduction in system energy [36]. Budkewitsch et
al. [37] examined pattern maturation by initiating with Voronoi polygons and random crack
seeds, generating successive Voronoi polygons using the centroids of the previous ones as seeds.
Jagla [38] proposed that crack progression in columnar joints is driven by a balance between
two factors: the crack front gains energy by advancing ahead of neighboring cracks, reducing
stress, but its driving force weakens as it enters regions of lower thermal shrinkage stress.

Hofmann et al. [40] simulated crack patterns caused by thermal shock using a 3-D gradient
damage model, leading to regular hexagon formations in the final stages. Interestingly, most
junctions in the early stages of the simulation were near ∼ 120◦. Additionally, Hofmann et
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al. [41] used three-dimensional finite element methods to model the incremental progression
of crack fronts, accounting for local crack extension and deflection angles relative to previous
crack planes.

This work investigates the elongated interfaces of columnar joints, particularly how their
cross-sections transition from a disordered Gilbert tessellation to an ordered hexagonal Voronoi
pattern. As these columns extend to several meters in length, various intriguing changes occur
at the growing interface. The outline continuously evolves, the center may shift, and the
columns may twist. This study systematically explores these phenomena through simulations
across a wide range of systems and compares the results with natural examples.

The objectives of this work are threefold: (1) to simulate the three-dimensional formation
of columnar joints in cooling lava, (2) to map their evolution within the (n,v,D,λ ) domain,
and (3) to understand the energy minimization mechanisms and propose a relationship between
energy and the geometric characteristics of the crack mosaic.

The following sections provide an overview of the current understanding of the mechanics
behind columnar joint formation. This is followed by a description of the simulation model
used for studying columnar joints. We then present and analyze the simulation results, focusing
on the trajectory within the (n,v,D,λ ) space. Subsequent sections evaluate the system’s energy
changes and propose a relationship between these energy changes and the geometric features
of the crack mosaic. Finally, the conclusions are summarized.

3.1.1 Formation of Columnar Joints

As lava cools and solidifies, its upper surface contracts, breaking into polygons. The sides of
these polygons form cracks that meet at T-junctions. These cracks create gaps that allow gases
and fluids to circulate through convection, which further cools the lava within the polygonal
boundaries, promoting additional solidification. As molten lava comes into contact with the
cooler atmosphere, it contracts and forms crack patterns on the surface. Initially, this contraction
leads to a disordered mosaic of cracks with T-junctions, which is attributed to inherent defects
or heterogeneities in the system that act as crack nuclei [24]. Systematic studies of basalt
fracturing [42, 43] support the thermal cracking hypothesis of columnar joints. These joints
serve as conduits for convective heat flow from the hot interior to the cooler atmosphere, with
the convective medium typically being gases and vapor. Thicker columns are expected to
retain higher temperatures at their centers compared to slimmer columns, as the cooling rate
of a cylinder is inversely proportional to its diameter. Heat loss from the column interiors
primarily occurs through conduction to the crack front, meaning that columnar joints cool via a
combination of convection and conduction processes. Figure 3.2(a) illustrates a schematic of
these cooling processes.
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Fig. 3.2 (a) Convection flow cooling, represented by white arrows, occurs within the crack
joints, while conduction cooling, shown by black arrows, takes place across the column’s
interior. The isotherms are indicated by dashed lines. Figure adapted from [37]. The red line
illustrates the deviation of the growing crack toward the direction of the wider column. (b) A
schematic diagram for estimating di(max) in Eq. (3.1) is presented. The diagram represents a
horizontal cross-section of adjacent columns meeting at a single point. Black circles depict the
centroids of neighboring polygons surrounding the node, which is marked by a red circle.

Assuming heat is evenly removed from all crack fronts, the isothermal surfaces appear as
paraboloids centered on the columns [see Fig. 3.2(a)] and become concentrated at the advancing
crack tip, resulting in a higher density of isothermal curves in that area. This concentration
leads to increased heat flow near the crack tips.

The consistent alignment of the long-axis directions of the polygons indicates that tensile
stresses in the transverse plane of the crack front are statistically isotropic. This isotropic
stress field is sustained on a larger scale by a fluid system circulating vertically through the
three-dimensional network. However, on the scale of individual columns, the local stress field
at the crack segment between columns is influenced by both mechanical and thermal stresses.
For cooling lava, the dominant stress contribution at the crack tip is influenced by the thermal
gradient. This gradient arises from the high temperature at the center of the cooling column and
the relatively cooler crack front, with conduction being the primary cooling mechanism. Since
crack faces are stress-free planes, new cracks tend to intersect older cracks in the direction
of the greatest stress release, which aligns with the direction of the highest thermal gradient.
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Consequently, crack advancement tends to cut into the hottest (and thus thickest) columns
common to the crack front, as shown in Fig. 3.2(a).

As crack joints propagate, the isothermal surfaces are again modified by convective cooling
along the network of crack fronts. Thus, columnar joint formation is a cyclic process, with
each crack advancement influenced by both convection and conduction heat flow. Field
measurements [44] show that the cooling front advances in a quasi-steady manner, evident in
the distinct changes in the orientation and width of column faces along their length.

The next sections will explain the methodology used to simulate 3-dimensional columnar
joints and the logistics that establish the relationship between the iso-perimetric ratio and energy
as the joint system undergoes energy minimization.

3.2 Simulation of Columnar Joints

In the 3-dimensional columnar joint simulations, the disordered crack pattern on the top surface
of a cooling lava system is replicated by creating a polygonal mesh of cracks based on a
specified density and distribution of crack seeds. The 2-dimensional tessellation of the surface
is carried out using (a) the Gilbert algorithm and its variants and (b) the Voronoi algorithm.
Variations in the disordered crack mesh pattern are introduced by altering the distribution,
density, and orientation of the crack seeds. The evolution of this polygonal crack mesh simulates
successive transverse layers of a columnar joint system as it progresses vertically downward
from the surface layer.

Although the stress field at the tip of an advancing crack front includes contributions from
various stresses beyond thermal stress, thermal stress predominates in the case of cooling
molten lava. The model assumes that the advancement of the crack front is solely guided by
the intensity of the thermal field. It is presumed that all crack fronts on a transverse plane
are at the same temperature, with the highest temperature within a polygon occurring at the
centroid. In a transverse horizontal section of the system (see Fig. 3.2), the centroids of the
polygons, being further from the cooler boundaries, represent the highest temperature within
each polygon and are termed ‘thermal stress points.’ This temperature distribution is illustrated
in a vertical section of the system in Fig. 3.2(b).

A crack node shared by multiple polygons is influenced by each of their thermal fields.
According to previous discussions, the thermal field intensity at any point on the polygonal
boundary (crack front) is greatest in the thickest polygon it intersects. The model assumes that
the vertical advancement of a crack edge at any time step is determined solely by the movement
of its two end nodes. Stochasticity in node movement is factored in, with node displacement
being influenced by the thermal field gradient. One of the centroids of the neighboring polygons
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is chosen randomly, with the probability proportional to its distance from the node, thus favoring
movement towards the farthest centroid. The node is then moved towards this centroid by a

fraction κ of the distance from the centroid to the node, dn, adjusted by a factor
(di(max)− d̄)

di(max)
.

Here, di(max) represents the maximum distance between the node and a centroid among its

neighboring polygons [see Fig. 3.2(b)], d̄ is the average distance, calculated as d̄ = ∑
M
i=1|di|

M ,
and M is the number of neighboring polygons sharing the node. This factor accounts for the
correlation of thermal stresses at a node due to its neighboring polygons and columns. Thus, in
a time-step, a node is moved by ∆x following

∆x = κ
(di(max)− d̄)

di(max)
dn (3.1)

and in the direction of dn.
All nodes in the crack mesh are updated according to a parallel updating protocol. At each

time step, the values of n, v, D, and λ are recorded. The process begins with estimating ∆x for
each node in the crack mesh according to the specified protocol and concludes with shifting the
nodes accordingly. The crack mesh is considered to be mature when the difference between
successive node positions in the transverse plane at consecutive time steps is less than or equal
to a threshold value δ . In the simulation, δ was set to 10−5.

The periodic transverse striations seen in real columnar joints suggest that their vertical
growth occurs in intermittent phases. In the simulation, the duration of each time step represents
the time needed for the cooling crack joints to advance from one layer of cracks at quasi-
equilibrium to the next. The updated crack mosaic configuration at each time step reflects the
geometry of a transverse layer of the columnar joint. Figure 3.3(c) illustrates that columns can
twist as they grow downward, a phenomenon observed in nature. Figure 3.3(d) reconstructs the
progression of a single column in the joint system by sequentially placing the time development
of a specific polygon from the mesh. An animation illustrating the evolution of the crack front
can be found in Ref. [45].

Our simulation algorithm does not account for the creation or termination of new columns,
as nodes are neither added nor removed. While such events are rare in real columnar joint
systems, they may occasionally be observed.

3.3 Energy Minimization and Evolving Columnar Joints

It is well-established that a regular polygon with more than six sides cannot tile a plane without
gaps. Among all regular, close-packed polygonal patterns, the hexagonal arrangement is notable
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Fig. 3.3 (a) Simulated 3-dimensional columnar joints, with step-wise sections showing their
time development. (b) Natural columnar joints located in Genbudo Geo-Park, Japan. (c) Time
progression of several independent columns within the crack mesh. (d) The evolution of a
single columnar joint, tracked from its initial polygonal shape (highlighted in green) to its final
matured form (highlighted in red).

for having the smallest crack perimeter for a given area [46], as evident from the formula for
λ in Eq. (2.4) when applied to a hexagon. This characteristic explains why columnar joints,
which start with a disordered crack pattern, tend to evolve into a nearly hexagonal arrangement
as they mature [47].

Jagla et al. [38] introduced an empirical crack energy functional, ξ , given by

ξ = γ ∑
i

Aν
i +σL. (3.2)

where Ai represents the area of the ith crack ped, L denotes the total crack length, γ and ν

are free parameters with appropriate dimensions, and σ is the fracture energy per unit length.
Jagla et al. used ν = 2 in their analysis and demonstrated that the minimum value of Eq. (3.2)
is achieved by a perfect hexagon.
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Observations of columnar joints in nature reveal that the initial polygonal crack mesh on the
top surface of basaltic columns does not initially exhibit the well-ordered hexagonal tiling seen
in the transverse plane of mature columns. Over time, the polygonal geometry evolves into a
hexagonal pattern. Since natural systems tend to seek a minimum energy configuration, there
is a reasonable expectation of a correlation between the shape evolution of columnar joints
and energy minimization. This study aims to establish a relationship between the shape of the
polygonal mesh, as measured by the isoperimetric ratio λ , and the energy E of the column at
each stage. In the model, this involves calculating λ and E at every simulation time step.

Crack evolution in columnar joints involves two distinct fracturing processes occurring on
different planes. The first process occurs on the top surface, where cracks initiate at nucleation
sites once the maximum stress is exceeded. These fractures then propagate horizontally,
influenced by local surface inhomogeneities. According to fracture mechanics principles, a
crack of length l relieves the accumulated stress in a region of approximately the same length
scale ≈ l around it [24]. Consequently, the area A of a crack ped is roughly proportional to l2.
This area A is influenced by factors such as the elastic modulus of the system and contributes to
the periodic patterns often observed on cracked surfaces. We refer to the energy expended in
fracturing the horizontal plane as E1.

The second fracturing process occurs in the vertical plane. When a fracture extends
slightly beyond neighboring fractures, stress concentrates at the fracture tip, facilitating its
further advancement. In cooling lava columns, the temperature gradient increases ahead of
the fractures. As a fracture progresses, it quickly encounters regions with a lower temperature
gradient, which hinders further advancement. This leads to a sequential vertical advancement
of fractures, termed as the sequence step with distance δ z for a very small advancement. The
energy associated with this vertical fracturing process is referred to as E2. Since all points
along the total crack length contribute to the vertical advancement, E2 is directly proportional
to the total crack length L on the plane. For a sufficiently small advancement, each δ z can be
assumed to be equal. Therefore, for each crack front advancement, a volume of approximately
A×δ z becomes stress-free.

At any given time step, the total energy E can be expressed as: E = E1 +E2, i.e.,

E = ∑
i

γAi +σL (3.3)

Here, L represents the total crack length, γ is a function of elastic constants with units of stress
per unit length, and σ is the crack energy per unit length, which is a material constant. The index
i spans all the crack peds in the mesh. As columnar joints often begin with 90◦ crack joints
and mature to 120◦ crack joints, this progression suggests that the system’s transition towards
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energy minimization is related to changes in λ , which defines the shape of the crack ped. Given
that the total crack length L is related to the perimeter of the crack peds by L = ∑i li/2, Eq.
(3.3) can be expressed in terms of λ using Eq. (2.4), resulting in:

E = ∑
i
[γAi +σ

′√Ai/λi] (3.4)

Here, the index i runs over the total number of crack peds on any transverse plane. Since the
crack lines are very thin compared to the areas of the peds, the total crack ped area can be
approximated as constant. Under this assumption, Eq. (3.4) allows us to propose an empirical
relation for the energy in terms of the average λ of the mosaic as follows:

E = αλ
−β + c (3.5)

Here, α and β are parameters, and c is a system constant. The rate of change of the system’s
energy as the columnar joints evolve can be expressed as:

dE
dt

=−αβλ
−β−1 dλ

dt
(3.6)

Thus, Eqs. (3.5) and (3.6) together describe the relationship between the geometry of the
transverse polygonal mesh and the energy expended in forming it.

To evaluate how well our proposed relation of energy as a function of λ [Eq. (3.5)] compares
with other energy models for columnar joints, we can perform the following steps:

1. Estimate Parameters: At each time step of our simulation, compute the crack ped area,
crack length, and λ of the crack mosaic.

2. Apply Jagla’s Energy Functional: Use these estimates to calculate the energy functional
proposed by Jagla et al. using Eq. (3.2).

3. Compute Rate of Change: Determine the time rate of change of Jagla’s energy func-
tional ξ .

4. Compare with Our Model: Compare this rate of change with the corresponding change
in total energy obtained from our model, as given by Eq. (3.6).

By comparing these values, we can assess how well our proposed energy relation aligns with or
improves upon Jagla’s energy functional for modeling the evolution of columnar joints.
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3.3.1 Geometrical Energy of Crack Planes

For each polygonal region, we can define a function εi as follows: εi =
∫

x∈Ωi
w(x)∥xi − x∥2dx.

Here, ∥ · ∥ represents the Euclidean norm in R2, w(x) is a density function, and {xi}n
i=1 are

points on the polygonal plane. The integration is carried out over the entire area of the polygon
Ωi. The geometrical energy function of the tessellation can then be obtained by summing this
function for all polygons in the tessellation.

ε = ∑
i

εi = ∑
i

∫
x∈Ωi

w(x)∥xi − x∥2dx (3.7)

The relationship between the geometrical energy defined in Eq. (3.7) and the crack energy (E)
becomes clear when (w(q)) is interpreted as the energy density. For this energy function to be
minimized, the tessellation must be a Centroidal Voronoi Tessellation with {xi}n

i=1 as the seed
points [48].

To evaluate the system’s progress toward energy minimization, the geometrical energy of
the polygonal mesh at each simulation time step can be computed and graphed against time.
By creating the Voronoi polygonal mesh at each step, the corresponding geometrical energy
can be determined. This allows for comparison between the time development of Eq. (3.6) and
the rate at which the geometrical energy changes as the system progresses toward its final state.

3.4 Results and Discussion

This work simulates various columnar joint systems and compares the resulting structures with
those found in nature. The initial polygonal crack patterns on a square plane were generated
using variations of the Gilbert tessellation, incorporating different crack orientations and seed
distributions. The columnar joints were then allowed to evolve until they reached maturation.

Figure 3.3(a) shows a typical image of 3-dimensional columnar joints generated by the
described algorithm, which closely resembles natural columnar joints depicted in Fig. 3.3(b).

Figures 3.3(c) and (d) illustrate the time progression of individual columns within the mesh
from their formation to maturity, highlighting how the columns twist as they evolve toward a
hexagonal shape.

Tracking the (n,v,D,λ ) Trajectory of Columnar Joints

The first rows of Figs. 3.4 and 3.5 display the transverse sections of columnar joints for uniform
and normal crack seed distributions, respectively. Different crack patterns were generated by
varying the crack orientation for each seed distribution, as indicated by the Roman numerals
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Fig. 3.4 Characteristics of crack mosaic dynamics following Gilbert tessellation with uniform
seed distribution. Variation in crack orientation with respect to the horizontal axis: (I) Random,
(II) Parallel, (III) ±10◦, (IV) 45◦ and 90◦. (a) Crack mosaic at the start (t = 0). (b) Crack mosaic
at maturation. (c) Crack ped area distribution at t = 0, t = 10, and t = 100. (d) Distribution of
average polygonal angle of crack ped at t = 0, t = 10, and t = 100. (e) Time development of
average n, v, D, and λ . For figures in rows (c) and (d), green, red, and blue denote distributions
at t = 0, t = 10, and t = 100, respectively.

(I-IV). The mature crack mosaic patterns for each simulation variation are shown in the second
row of Figs. 3.4 and 3.5.

In the third row (c) of Fig. 3.4, the crack ped area distribution shows minimal change, with
only a slight sharpening of the peak as the cracks mature. This suggests a relatively stable
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Fig. 3.5 Characteristics of crack mosaic dynamics following Gilbert tessellation with normal
seed distribution. Variation in crack orientation with respect to the horizontal axis: (I) Random,
(II) Parallel, (III) ±10◦, (IV) 45◦ and 90◦. (a) Crack mosaic at the start (t = 0). (b) Crack
mosaic at maturation. (c) Distribution of average polygonal angle of crack ped at t = 0, t = 10,
and t = 100. (d) Time development of average n, v, D, and λ . For figures in row (c), green, red,
and blue denote distributions at t = 0, t = 10, and t = 100, respectively.

crack area distribution over time. However, regardless of the initial crack orientation or seed
distribution, a distinct peak at 120◦ emerges at maturation (t = 100), as seen in Fig. 3.4(d),
indicating that the Y-junctions characteristic of mature columnar crack joints are successfully
reproduced in the simulation.

Figure 3.4(e) presents the time development of topology and geometry measures for each
simulation case. The values of (n,v) rapidly increase from (2,4) to (3,6) within the first few
time steps and then remain nearly constant. The geometric measure D decreases sharply at
first, then increases to a constant value following a power-law trend. The isoperimetric ratio λ

steadily rises to approximately 0.75, indicating the approach to a near-hexagonal shape. This
pattern holds true across all cases studied, regardless of the initial shape of the polygons.
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Fig. 3.5 illustrates similar behavior for columnar joints simulated with Gilbert tessellation
but using a normal seed distribution.

When comparing Figs. 3.4 and 3.5, it is clear that although the initial crack mosaics differ
due to the different seed distributions, the dynamics of crack maturation are quite similar.
Differences in crack evolution are reflected in the time evolution of the geometric measures D
and λ . Despite the variation in starting configurations, the similarity in the saturation values
of all measures suggests the existence of a unique configuration for (n,v,D,λ ) in columnar
joints. The effect of the different initial crack mosaic configurations is primarily observed in the
trajectory of the corresponding (n,v,D,λ ) point in R4, as depicted in Fig. 3.6. Figures 3.6(a-h)
demonstrate the transition from (n,v) = (2,4) to (n,v) = (3,6), confirming that the crack tiling
on the transverse plane of columnar joints evolves from a Gilbert-like pattern to a Voronoi-like
pattern upon maturation. In contrast, Fig. 3.6(i) does not exhibit a prominent trajectory since it
illustrates the evolution of a crack system that begins with a Voronoi polygonal mesh. This
specific case will be discussed further in the following section.

The characteristics of columnar joints simulated using Voronoi polygonal tessellation with
a uniform seed distribution are presented in Fig. 3.7. Since crack evolution using a normal seed
distribution did not display significant differences, those results are not discussed here. In the
(n,v,D,λ ) domain shown in Fig. 3.6(i), both the initial and final points lie on (n,v) = (3,6), as
anticipated. This is because the crack mosaic at the formation stage of the joint system was
generated using the Voronoi algorithm.

Energy Analysis

An examination of Fig. 3.4(c) reveals that the crack area of the evolving mosaic remains
relatively stable over time. This observation supports the assumption of constant area in the
construction of Eq. (3.5). To test our hypothesis that the system progresses towards energy
minimization, as reflected in the changing polygon shapes, the total crack length L and the
average isoperimetric ratio λ are plotted against time.

Figure 3.8 illustrates that both L and λ follow a power-law relationship with time (t),
described by the equations:

L ∼ aLt−bL . (3.8)

and

λ ∼ aλ tbλ . (3.9)
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Fig. 3.6 Trajectory of the crack in the (n,v,D,λ ) domain: Gilbert cracks with uniform seed
distribution and crack orientation - (a) random (b) parallel (c) ±10◦ (d) 45◦ and 90◦; Gilbert
cracks with normal seed distribution and crack orientation - (e) random (f) parallel (g) ±10◦

(h) 45◦ and 90◦; (i) Voronoi cracks.

By substituting the expressions for L and t from Eqs. (3.8) and (3.9) into Eq. (3.3), the equation
can be rewritten in terms of λ , leading to Eq. (3.5). The parameters α and β in Eq. (3.5) can
also be derived from the simulation data and are found to be

β =
bL

bλ

(3.10)
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Fig. 3.7 Characteristics of crack mosaic dynamics following Voronoi tessellation with uniform
seed distribution. (a) Mosaic at t = 0. (b) Mosaic at t = 100. (c) Time variation of the histogram
of crack ped area. (d) Time variation of the histogram of the average internal angle of crack
ped. (e) Time development of n, v, D, and λ .

Fig. 3.8 Power law fitting of (a) crack length, L and (b) λ

and

α = σaLaλ
β (3.11)
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This confirms that the proposed empirical relationship between the energy of the columnar
joint system and the shape parameter λ , which was derived from heuristic arguments, aligns
with the results obtained from the simulation.

To validate our model, we calculated the total energy at every time step for all simulations
of columnar joints using Eq. (3.5), as shown in Fig. 3.9(a). The values of α and β were derived
from Eqs. (3.10) and (3.11) for the different mosaics studied, which are listed in Tab. 3.1.
The exponent β has an average value of approximately 0.3, with its variation potentially due
to changes in crack orientation. The parameter α shows consistency in magnitude across all
seed distributions. To further compare our results with the empirical expression proposed by
Jagla et al., Eq. (3.2), we plotted the energy evolution for crack mosaics with uniform seed
distribution and random orientation in Fig. 3.9(b), as a representative example. The fits were
nearly exact across all mosaic configurations studied. The goodness of fit across all simulation
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Fig. 3.9 (a) Trajectory of energy E based on Eq. (3.5) for various initial mosaics. (b) Compar-
ison of energy minimization trajectories using Eq. (3.2) and Eq. (3.5) for the initial mosaic
generated with Gilbert tessellation, featuring a uniform seed distribution and random crack
orientation.

variations indicates that when the crack area remains approximately constant, monitoring the
time evolution of columnar joints can be effectively achieved by tracking changes in the shape
parameter λ alone.

According to Eq. (3.6), a typical plot of the rate of change of the isoperimetric ratio, dλ/dt,
versus time, t, mirrors the change in the energy functional described by Eq. (3.2), as shown
in Fig. 3.10(a). This indicates that energy minimization is primarily accomplished through
adjustments in crack length and polygonal shape within the transverse plane of the crack mosaic
as the columnar joint progresses toward maturation.
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Table 3.1 Values of α and β obtained from Eqs. (3.10) and (3.11) for the energy estimations.

Model distribution & orientation α β

Gilbert uniform-random 7323 0.31
Gilbert uniform-±10◦ 7162 0.34
Gilbert uniform-45&90◦ 7233 0.37
Gilbert uniform-parallel 6887 0.48
Gilbert normal-random 8836 0.29
Gilbert normal-±10o 8323 0.39
Gilbert normal-45&90◦ 8369 0.39
Gilbert normal-parallel 7834 0.50
Voronoi uniform-random 8204 0.23
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Fig. 3.10 (a) Plot of dE/dt against dλ/dt. (b) Comparison between the columnar joint pattern
(dashed line) and the Voronoi mosaic (solid line) created from the centroids of matured columns.
(c) Change in < ∆r > over time t. (d) Geometric energy ε trajectory as described by Eq. (3.7).

Equation (3.7) predicts a minimum energy configuration for systems with Voronoi polygons,
while the initial crack mosaic in our simulation does not necessarily conform to this structure.
To verify whether the maturation of the simulated columnar joint system aligns with the
minimization of geometric energy, the centroids of the polygons in the transverse mosaic at
each time step were used as seeds to construct corresponding Voronoi polygons, as shown in
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Fig. 3.10(b). The difference in distance, ∆r, between the centroid of the Voronoi polygon and
its seed was calculated, and the average difference, ⟨∆r(t)⟩, was estimated for all polygons
in the mosaic at each time step. The variation in the geometric energy of the evolving crack
mosaic was found to correlate with the variation of ⟨∆r(t)⟩ over time, as expected, Fig. 3.10(c).

The geometric energy of the transverse crack plane in the columnar joints was estimated at
each time step using Eq. (3.7). The results for the change in geometric energy for the case of
columnar joints starting from a uniform seed distribution with randomly oriented cracks are
plotted as a function of time in Fig. 3.10(d). For the calculations, the density parameter w(q)
was set to unity. The curve shows a decrease in energy over time, tending toward a minimum
as the mosaic transitions into a Voronoi-like structure.

3.5 Conclusions

The time evolution of columnar joints reveals several intriguing dynamics, particularly in
the crack mosaics within the transverse plane. Initially, these mosaics are characterized by
T-junctions, which evolve into Y-junctions as the lava cools and the joint system matures.
For the first time, this study maps the evolution of both the topology and geometry of crack
mosaics as a trajectory in the (n,v,D,λ ) domain. By simulating 3-dimensional columnar joints
formed through cooling lava using a stochastic model, we introduce variations in initial crack
mosaics to reflect material heterogeneity. Variations in crack seed distribution and orientations
simulate the preferred cleavage planes of minerals in basaltic rocks, demonstrating that the
trajectory in the (n,v,D,λ ) space depends on both factors. This method of analyzing time-
dependent topology-geometry evolution offers a novel approach to distinguishing between
different columnar joint systems and holds potential for application to other complex dynamical
systems.

The evolution of hexagonal tiling in the transverse sections of mature columnar joints is
captured by an empirical relationship linking the geometry of the crack mosaic to the system’s
energy changes. Building on fracture mechanics and the underlying physics of columnar joint
formation, we propose an empirical relation between system energy and the shape parameter
λ . The total system energy follows a power-law dependence on λ , with an exponent β that
averages around 0.3 but ranges from 0.2 to 0.5 across simulations (as detailed in Tab. 3.1).
Both the coefficient α and the exponent β are derived from the stochastic model. At crack
maturation, λ stabilizes around 0.75, regardless of the initial mosaic configuration. Validation
of this model is achieved by aligning the proposed energy evolution with existing energy
estimates from the literature. Unlike previous methods that relied on challenging estimations of
individual polygon statistics, our model ties the system’s energy to the average shape of the
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crack mosaic, providing a clearer connection between visible geometric changes and energy
dynamics over time. While traditional energy minimization methods often use Monte Carlo
techniques, our simulation naturally reorganizes the crack mosaic’s geometry according to
fundamental physical principles, leading to an energy-minimized state.

In applying topological concepts to these findings, we draw parallels between the geometric
energy of plane polygonal meshes and the physical energy of the columnar joint system.
Minimizing the geometric energy for centroidal Voronoi diagrams – a well-known result in
topology – serves as a useful analogy. We estimate the geometric energy of the polygonal
mosaics over time and show that as the system matures, the mosaic becomes more Voronoi-like,
moving towards a minimum geometric energy state. The consistency between this geometric
evolution and the physical energy estimates derived from the model further reinforces its
validity. This work not only advances our understanding of the physical processes governing
columnar joint formation but also provides a robust framework for studying energy dynamics
in complex polygonal systems.





Chapter 4

Voronoiness of Crack Patterns

4.1 Introduction

Mathematically, a Voronoi diagram divides a plane into regions around a set of points called
generators. These regions, known as Voronoi regions, are defined as having every point within
a region closest to its corresponding generator or seed. This property makes Voronoi diagrams
particularly interesting, as they have diverse applications in physical systems. In real-world
scenarios, the seeds represent critical points that influence the tessellation process. For example,
during the 1854 cholera outbreak in Soho, physician John Snow mapped the outbreak and
demonstrated that the most affected area formed a Voronoi region with the contaminated Broad
Street water pump as the seed [49].

Crack patterns, or mosaics, prevalent throughout nature, ranging from microscopic bio-
logical structures to vast volcanic columnar formations, for example the intricate veins on
a dragonfly’s wings to the irregular brown spots on a giraffe’s fur [50–55], columnar joints,
permafrost to salt play show very resemblance to Voronoi diagram. They often involve some
form of optimization. For instance, the honeycomb’s structure, a Centroidal Voronoi diagram,
is designed to maximize the efficiency of wax usage [46]. Yadav et al. [56] proposed a method
to identify key Voronoi sites to enhance the structural performance of beams by ensuring
uniform stress distribution. Dynamical systems, such as the formation of surface cracks due to
permafrost thawing and the development of columnar joints, undergo evolution over decades,
ultimately adopting a pattern akin to a Voronoi tessellation [57, 37, 58–60]. The formation
of mud crack patterns during summer, characterized by a rough Voronoi tessellation, likely
originates from local stress points caused by drying; similarly, the formation of giant columnar
joints during the cooling process of basaltic lava sees the highest temperatures at the Voronoi
regions’ inception points, visible in their cross-section. It has been observed that the formation
of columnar joints aims to release the maximum amount of thermal stress to reduce the system’s
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overall energy [38, 61]. The presence of Voronoi tessellation across various fields including
biology [62–65], physics [66–68], architecture, design [69, 70], and fabrication [71–73], high-
lights the need for further investigation into the fundamental forces driving this geometric
formation.

This chapter delves into measuring the Voronoiness of various static and dynamic crack
patterns. As a case study, I modeled the evolution of mud crack patterns resulting from repeated
wetting and drying cycles. Mud slurries, comprised of large colloidal particles with relaxation
times significantly longer (by an estimate of ≈ 1010 times) than those of other molecules,
including clay and lava, showcase the slow dynamical maturation that scientists are able to
track due to these prolonged relaxation times. This has led to the utilization of a spring network
model by the researchers to simulate the temporal evolution of crack patterns in desiccating
clay systems subjected to wetting-drying cycles.

The transformation of the initial geometry of the desiccation crack mosaic with the pro-
gression of these cycles until a mature state is achieved has been the subject of prior research.
In the previous chapter, we introduced a specific topology-geometry combination (n,v,D,λ )

to characterize a crack mosaic [31]; with (n,v) defining the topology and (D,λ ) defining the
geometry of the crack pattern. Further exploration into these topological and geometrical
measures is provided in the subsequent section. This classification of crack mosaics by their
(n,v,D,λ ) parameters allows for their identification as distinct points within a 4-dimensional
topology-geometry space, a subset of R4. Crack mosaics with similar (n,v,D,λ ) configurations
are grouped together in this space. However, the majority of real-world crack patterns tend to
cluster near the Gilbert crack model point, with fewer instances clustering around the Voronoi
crack descriptor, leaving considerable portions of the (n,v,D,λ ) domain space unoccupied.
As reported, the transition in mud crack patterns from featuring an abundance of T-junctions
(aligning with Gilbert mosaics) to evolving towards Voronoi-like patterns with Y-junctions over
wetting-drying cycles has been meticulously mapped. This transition across the (n,v,D,λ )

domain effectively captures and characterizes the development of such complex dynamical
systems over time.

To quantify the ‘Voronoi-ness’ of a physical tessellation, we have introduced a measure
denoted as p, which offers a heuristic assessment of how closely the tessellation resembles a
Voronoi pattern. Additionally, the authors have effectively employed the Hausdorff Metric dH

to assess the deviation of any crack mosaic from a Centroidal Voronoi.
The quantification of the ‘Voronoi-ness’ in terms of p and the Hausdorff Metric over time

cycles involves the examination of the crack mosaic’s shape evolution. The patterns observed
in our simulations closely resemble real system observations made by physicists and geologists.
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It has been observed that the desiccation mud crack mosaics tend to evolve towards a Voronoi
tessellation as this minimizes the system’s total energy.

The shape and size of the polygons in a Voronoi tessellation are influenced by the distribution
of seeds in each region. Identifying the seed of a Voronoi region can be used to establish the
range of correlation of a specific physical property, such as the elastic properties of surface
cracks. In the context of Centroidal Voronoi tessellations, the seed and the centroid of the
corresponding Voronoi region are the same. However, in real crack mosaics, it is not always
possible to definitively determine the seeds, and the centroid of the polygon is often used as an
approximation for the seed. Therefore, it is interesting to determine the degree of ‘Voronoi-
ness’ in any polygonal network and measure how closely it resembles a Centroidal Voronoi
tessellation. We demonstrate that by using both the p measure and the Hausdorff Metric to the
corresponding Centroidal Voronoi mosaic, it is possible to determine (a) the degree to which a
crack mosaic resembles a Voronoi tessellation and (b) how close a Voronoi region is to be a
Centroidal Voronoi tessellation.

In the following sections, I first introduced Measures for the quantification of the ‘Voronoi-
ness’ of a crack mosaic. Then, a simple explanation of the mechanics of desiccation cracks. The
simulation model of the wetting and drying dynamics of a clay system is described next in terms
of a spring network model based on the mechanics of desiccation cracks. Having established
the fundamental theories guiding this work, the results of the simulation are examined in terms
of the time evolution of both - the crack mosaic geometry and the system energy. The ‘Voronoi-
ness’ of the crack mosaic is first checked in terms of existing laws and measures of entropy.
We follow this up with measures of ‘Voronoi-ness’ represented in terms of wetting-drying
cycles and quantified in terms of defined measures. The preferred ‘Voronoi-ness’ of desiccating
crack mosaics is explained next in tandem with the energy minimization of the system. An
examination of a few natural but static crack mosaics is also conducted to check if nature does
indeed have any preference for Voronoi patterns in mosaics.

4.2 Theoretical Background

4.2.1 Quantification of Voronoi-ness

Given a finite set of points x1,x2, . . . ,xn on a subset Ω of the plane, we define the region Ωi as
{x ∈ Ω : ∥x− xi∥⩽ ∥x− x j∥ for all j ̸= i}. A Voronoi diagram with seeds x1,x2, . . . ,xn is the
mosaic of Ω formed by the regions Ω1,Ω2, . . . ,Ωn. This creates a polygonal mosaic of Ω with
notable geometric properties. A related construction is the Delaunay Triangulation, which is a
triangulation of a finite set of points F that satisfies the Empty Circumcircle Property—no point
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in F lies inside the circumcircle of any triangle in the triangulation. The Voronoi diagram is the
dual construction of the Delaunay triangulation for the same set of points. For further details
on the mathematical properties of Voronoi diagrams and Delaunay triangulations discussed
here and throughout this work, see [74].

Given a plane mosaic, determining whether it is a Voronoi diagram for a specific set of
points is generally a challenging problem, as the seed points are not predetermined. For
real-world mosaics, a computationally efficient approach is to treat the centroids of the mosaic
regions as seeds of a Voronoi diagram, which can then be compared to the original mosaic. For
example, in crack mosaics, the exact location of stress seeds may not be easily determined.
As an approximation, the centroids of the polygons can be assumed to act as the seeds. By
connecting the centroids of polygons that share a common vertex, the mosaic can be triangulated
(see Fig. 4.8). A key characteristic of Delaunay triangulation is that none of the circumcircles
of the Delaunay triangles contain any of the seeds within them. This property can be utilized
to calculate the fraction of non-empty triangles that deviate from the Delaunay triangulation’s
criteria. A parameter p can be defined as a heuristic measure of the ‘Voronoi-ness’ of real crack
systems.

p =
Number of non-empty circumcircles

Total number of the triangles

A more definitive way to measure the ‘Voronoi-ness’ is the mathematical tool Hausdorff
Metric1. It measures the distance between two subsets within a metric space. This allows for a
comparison between an actual crack and its associated Voronoi diagram, which is created by
utilizing the centroids of the crack peds as seeds.[61].

4.2.2 Construction of Voronoi Diagram From a Seed Scatter

Figure 4.1 illustrates the step-by-step process for generating a Voronoi diagram from a set of
scattered points (seeds), as seen in Fig. 4.1(a). The first step involves connecting the points to
their neighbors to create a Delaunay triangulation, shown in Fig. 4.1(b). Then, circumcircles
are drawn around each triangle, as depicted in Fig. 4.1(c). Finally, the circumcenters (marked
in red in the online version) of triangles that share a common side are connected, completing
the Voronoi diagram in Fig. 4.1(d). If the points coincide with the centroids of the Voronoi
polygons, the diagram is known as a Centroidal Voronoi diagram.

1For compact subsets A,B ⊂ R2, the Hausdorff Metric dH(A,B) is defined as
dH(A,B) = max{max

a∈A
d(a,B),max

b∈B
d(b,A)}, where d(x,C) = inf{∥x− c∥ : c ∈C}.
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Fig. 4.1 A Voronoi diagram is the dual of a Delaunay triangulation: (a) The seeds used to
create the Voronoi diagram, (b) The Delaunay triangulation formed by connecting the seeds, (c)
Circumcircles around each triangle, ensuring no seed lies within the interior of any circumcircle.
The red points represent the circumcenters of the triangles. (d) Connecting the circumcenters
of triangles that share a common side results in the formation of the Voronoi diagram.

4.2.3 Crack Evolution

Most crack patterns found in nature are static, meaning their shapes remain unchanged over time.
Such static crack mosaics can vary from the nearly regular hexagonal patterns of honeycombs
to the irregular polygonal mud cracks seen in dry agricultural fields and riverbeds. However,
if the time scale of crack pattern changes aligns with the experimental or observation time,
it becomes possible to observe and track the dynamic evolution of these crack patterns until
they reach maturity. There are few instances of natural crack mosaics that undergo dynamic
shape changes, eventually maturing into Voronoi-like patterns. Examples include terrain cracks
caused by permafrost, columnar joints, and patterns found in salt deserts or dry salt lakes [75].
A similar pattern of crack evolution is observed in the drying of wet corn starch [33, 76, 5].
Laboratory experiments have documented mud cracks undergoing desiccation and repeated
wetting-drying cycles, during which the angles between the cracks shift from 90◦ to 120◦

[22, 35]. This raises the question of whether the time evolution of such crack patterns leads to
Voronoi-like tessellations. We simulate a repeated wetting-drying experiment on mud cracks



54 Voronoiness of Crack Patterns

using a spring network model [77] to gain deeper insight into the fundamental mechanisms
driving these evolving crack systems. We assess the ‘Voronoi-ness’ of the evolving crack
pattern using the metrics discussed in the following section.

During the desiccation of mud or other colloidal systems, capillary pressure between the
particles increases as evaporation occurs, causing the particles to draw closer together [78].
Micro-cracks form from inhomogeneities that act as crack nucleation sites [24]. When a new
crack appears near an existing one, it tends to grow towards the existing crack at a right angle.
This occurs because the stress is higher parallel to the existing crack, making it energetically
favorable for the growing crack to bend along the direction of the steepest stress release gradient,
leading it to meet the existing crack perpendicularly [79]. Consequently, a highly connected
crack network forms, dividing the mud surface into rectilinear regions (peds). As the cracks
open, they also contribute to surface evaporation, creating a moisture gradient within each ped
that increases from the exposed crack face towards the center. The drying front within each ped
advances from the crack boundary towards the center. As drying continues, the cracks widen
while the ped areas shrink. When the cracked surface is subsequently re-wetted to saturation,
the cracks and inter-particle pores refill with water, partially relaxing the elastic strain generated
during desiccation. In cases where the mud or clay system undergoes repeated wetting and
drying cycles, the vertices where different cracks intersect gradually shift, causing the angles
at the joints to change from 90◦ to 120◦. The ‘T’-shaped junctions transform into ‘Y’-shaped
junctions, and the crack pattern evolves towards a hexagonal arrangement.

4.3 Simulation of the Wetting-drying Process

As desiccation cracks emerge randomly and propagate along straight lines, we use the Gilbert
tessellation [80, 31], a random network, to model the initial crack pattern. Tiny crack tips
are initiated from a homogeneous Poisson point distribution of seeds and allowed to grow in
randomly selected directions on a 100×100 square plane. The cracks expand in both directions.
When a growing edge encounters an existing crack segment, it stops growing and forms a node
at the collision point. After the crack network is fully developed, the nodes and distinct crack
regions (peds) are identified.

The resulting crack mosaic, along with the dynamics of repeated wetting and drying, is
simulated using a connected spring network—a model commonly employed to replicate crack
mechanics [81, 13, 82–84]. A brief explanation of the spring model and its relation to elasticity
in solids is provided in the App. A. As discussed earlier, the crack faces along the boundary of
each ped contribute to surface evaporation. As the drying front of each ped progresses inward
over time, this process is replicated by connecting each vertex of the polygon (ped) in the
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mosaic to its centroid with a spring of spring constant k, which compresses with each drying
time step. The natural length d0 of the spring is set to the distance between the vertex and the
centroid, as shown in Fig. 4.2(a).
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Fig. 4.2 (a) Spring model used to simulate desiccation cracking. The vertices of the crack peds
are represented by red circles, and the centroids of the peds are marked by blue circles. The
natural spring length d0 between the centroid (blue) and vertex (red) is indicated by an arrow. A
red vertex experiences elastic forces from the surrounding polygons through the springs. After
N desiccation steps, the vertex moves to a new position (orange circle) and remains connected
to the polygon centroids by springs (shown as dotted lines) with new lengths dN (also indicated
by an arrow). (b) Initial crack network of a desiccation crack. (c) Final matured crack network
pattern after repeated wetting-drying cycles. (d) Initial and final frequency distributions of the
polygonal angles of crack peds. The final distribution shows a peak around 120◦, marked by a
blue dotted line.

The evaporation process is influenced not only by ambient conditions but also by the
material properties of the colloidal system. The simulation utilizes two time notations: (i) N (or
N′) and (ii) t. N represents the number of consecutive times a spring is allowed to contract due
to drying before it can be wetted again. For instance, N = 1 means the system is wetted after
one application of the drying rule, whereas N > 1 indicates N consecutive drying steps before
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the sample is wetted. The prime notation (N′) is used to indicate the number of successive
wetting steps.

In the simulation, the natural lengths of the springs decrease due to desiccation according
to the following relation –

dn = dn−1

(
1− a

bn

)
(4.1)

where a and b are parameters that control the desiccation process. At the nth desiccation time
step, the length of a spring decreases by a factor of

(
1− a

bn

)
relative to its previous length. This

desiccation rule is based on earlier work by Tarafdar and Dutta [85, 77], where experiments
on aqueous clay showed that evaporation typically continued until the mass was reduced by
approximately 63% of its original weight. As desiccation progresses and the springs contract, a
net force, which is the resultant of the forces from all the springs connected to that node, acts
on it, as illustrated in Fig. 4.2(a). The displacement of any node can thus be expressed in terms
of the spring length shrinkage as follows –

∆⃗x = κ ∑
i

∆d⃗i (4.2)

where the summation runs over all the springs connected to the node. The term ∆d⃗i represents
the shrinkage of the ith spring during a single cycle and is given by (d0 −dN)n̂, where dN is the
length of the spring after N desiccation time steps, just before the next wetting phase begins.
The unit vector n̂ points towards the centroid after N drying steps. In our simulations, κ is
set to 1, assuming the material is perfectly elastic and defect-free and that particle-particle
interactions are restricted to nearest neighbors. The crack evolution during the drying cycle is
modeled by displacing the nodes based on the resultant forces, which in turn alters the paths of
the crack segments.

During the wetting process, the springs expand, and their natural lengths change over time
as follows –

dn′ = dn′−1

(
1+

a
bn′

)
(4.3)

The nodes move similarly during the wetting process as they do during drying. However, since
all wetting-drying experiments are conducted by saturating the sample during wetting, we set
the number of wetting steps to N′ = 1 to represent saturation. At the start of the wetting-drying
cycle, i.e., at t = 0, n = 1, and dn−1 = d0 in Eq. (4.1). After N drying steps, all springs
connected to a single node shrink according to Eq. (4.1), and the node is displaced as per Eq.
(4.2). All nodes are updated to their new positions simultaneously. The d0 value of each spring
is reassigned based on the new position relative to its centroid. Wetting, followed by spring
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expansion, is then initiated according to Eq. (4.3). A single wetting-drying time cycle t consists
of N successive drying steps followed by one wetting step (N′ = 1). For clarity, the flow chart
of one complete wetting-drying cycle is depicted in Fig. 4.3.

Start: t = 0

Drying: springs
shrink according
to the Eq.(4.1)

Each node of the
mosaic is displaced

by Eq.(4.2)

Centroids of the
polygons are updated,
and the lengths of the
springs are reassigned

Wetting: Springs
are expanded
according to
the Eq.(4.3)

Each node of the
mosaic is displaced

by Eq.(4.2)

Centroids of the
polygons are updated,
and the lengths of the
springs are reassigned

t = t + 1

Fig. 4.3 Flow-chart of one complete wetting-drying cycle.

We note that the recursive relation in Eq. (4.1), with b > 1 and a > 0, forms an infinite
product that converges to a positive real number. This convergence physically corresponds
to a sufficient number of drying cycles. At the end of each time cycle t, the centroids of the
mosaic polygons are calculated, which serve as seeds for constructing a Voronoi mosaic. The
Hausdorff metric between the Voronoi mosaic and the crack mosaic is computed at every cycle
t.

The wetting and drying cycle is repeated until the difference in displacement of any vertex
between consecutive time steps is ≤ 10−3. At this point, the crack pattern is considered to have
matured and ceases to evolve further. Animations showing the movement of crack nodes during
wetting-drying cycles, along with the circumcircles of the dynamic triangulation, can be found
in Ref. [86].

4.4 Results and Discussion

In the following subsections, we first present the results and discussion on the dynamic evolution
of mud cracks under repeated wetting-drying cycles based on our simulation. The topological
and geometrical transformations of the crack mosaic are traced through a trajectory in the
(n,v,D,λ ) domain. We explain the preference for a Voronoi-like pattern at maturation by
analyzing the system’s energy evolution towards a minimum. The evolution of the p parameter
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and the Hausdorff metric over time cycle t are also examined and discussed. Finally, we provide
an analysis of some natural crack mosaics, i.e., matured crack patterns, to illustrate that energy
minimization is a significant driving force behind the preference for Voronoi geometry in crack
mosaics.

4.4.1 Dynamic Progression of Crack Mosaics

n−v domain
Figure 4.2(b) illustrates the initial desiccation crack network, while Fig. 4.2(c) shows its
matured state after repeated wetting-drying cycles. These figures were generated using param-
eter values of a = 0.05, b = 1.2, and N = 25. The simulation was conducted to examine the
effects of varying ambient conditions by adjusting a, altering the system’s physical properties
by changing b, and modifying the periodicity of the wetting-drying cycles by varying N. A
higher value of N indicates longer intervals between successive wetting events. Figure 4.4

Fig. 4.4 The trajectory of crack evolution under repeated wetting and drying cycles is shown in
the (n,v,D,λ ) domain. The green and red points represent the starting and ending positions of
the crack mosaic’s combinatorial trajectory, respectively. The positions of static crack mosaics
for (i) Mud crack I, (ii) Mud crack II, and (iii) Honeycomb within the 4-tuple vector domain
are also marked, as described in the legend.
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shows the time evolution of the topology and geometry measures for the simulation. The (n,v)
values rapidly increase from (2,4) to (3,6) within the first few time-steps and then remain
nearly constant over time. The geometric measure D initially decreases sharply, then increases,
stabilizing according to a power-law function. The trajectory represents the transformation
of the crack mosaic under repeated wetting-drying cycles from a Gilbert tessellation with
(n,v) = (2,4) towards a Voronoi tessellation with (n,v) = (3,6) as it matures.

Voronoiness

We have examined the impact of the parameters a, b, and N, which represent the ambient
effect, the rate of spring shrinkage (essentially capturing material properties), and the rate
of cycles, respectively, on the development of the crack mosaic. The ultimate rate at which
any mosaic under repeated wetting-drying cycles will evolve into a Voronoi diagram is an
optimization of all three parameters. Figure 4.5 illustrates the influence of these parameters
on p and Hausdorff Metric measures of the mosaic. The fact that both the p measure and the
Hausdorff Metric (distance between the crack mosaic and the corresponding Centroidal Voronoi
mosaic) decrease with t indicates that the crack mosaic moves towards a Centroidal Voronoi
pattern with an increasing number of cycles. In the matured mosaic, all nodes are trivalent,
and a large proportion of nodes form a 120◦ triad, as shown in Fig. 4.2(d). Our algorithm
geometrically ensures that in such cases, the Voronoi empty circle condition is satisfied, which
aligns with our simulations.

Figure 4.5 column I(a–c) shows that p is lower for higher a and lower b values, although
the effect of N is not very pronounced. A longer drying period before wetting (higher N) and
a lower elastic modulus (lower b), as indicated by Fig. 4.5(b–c), facilitate a faster transition
towards a Voronoi pattern.

For a regular hexagon, the value of λ is 0.907. Our simulation results indicate that the
value of λ increases from around 0.45 and stabilizes at 0.83, reflecting a transition to a nearly
hexagonal shape, as shown in Fig. 4.5 column III(a–c). This is corroborated by Fig. 4.2(c),
which displays the matured crack mosaic, where every polygon appears ‘rounder’ than its
initial geometry in the matured mosaic. In summary, our simulations suggest that the algorithm
tends to converge to a Centroidal Voronoi mosaic, regardless of the initial crack mosaic.
Additionally, materials with a lower elastic modulus, when subjected to longer drying periods
between consecutive wetting, promote a quicker maturation into a Centroidal Voronoi-like
mosaic. The time evolution of both the p measure and the Hausdorff Metric clearly shows that
repeated wetting and drying cycles drive desiccation crack mosaics toward a more Centroidal
Voronoi-like structure.
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Fig. 4.5 Column I(a–c): The ratio of circles encompassing any seed, p, decreases with succes-
sive wetting-drying cycles. Column II(a–c): Variation in the Hausdorff Metric between the
mud-crack pattern and the corresponding Voronoi diagram generated using the centroids. The
metric decreases with wetting-drying cycles and stabilizes at a constant value of around 1.8.
Column III(a–c): The Iso-perimetric ratio λ increases as the mud undergoes wetting-drying
cycles, indicating that the peds become rounder with each cycle. In the first row (I(a)–III(a)),
only the parameter ‘a’ is varied while the other parameters remain constant. In the second and
third rows, the parameter ‘b’ and the number of desiccation time steps N per cycle are varied,
respectively, with other parameters held constant.
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Energy

The total energy E of a mud layer with deep vertical cracks can be described as the sum of three
components: (i) E0, which encompasses all energy contributions except for elastic and fracture
energy; (ii) the elastic energy associated with the polygonal crack segments or ‘peds’; and (iii)
the fracture energy required to create new crack surface area. In our model, E0 is assumed
to be constant for systems under similar ambient conditions. Therefore, changes in the total
mechanical energy during the crack evolution process are attributed solely to the elastic and
fracture energy components.

The elastic energy at any given time step is proportional to the change in volume of the
polygonal peds. This is calculated as γ ∑i Aiδ z, where Ai represents the cross-sectional area of
the ith crack ped, and δ z is the vertical depth by which the crack ped opens during the time
step. We assume that the mud matrix is homogeneous and isotropic in the plane perpendicular
to the direction of evaporation, meaning all polygonal peds open by an equal infinitesimal
vertical depth δ z in a single time step. The parameter γ reflects the elastic properties of the
playa system.

During each wetting-drying cycle, a new crack surface area Lδ z is created, where L denotes
the total length of the crack channels in the transverse plane. The fracture energy required to
create this new surface is σLδ z, with σ being the fracture energy per unit area. Consequently,

E = γ ∑
i

Ai +σL (4.4)

where E denotes the total energy of the system per unit height.
From the simulation, it is observed that while the total area of the polygons remains nearly

constant, the total crack length L varies with time. This means that although the overall area
stays unchanged, the shape of the polygons evolves through wetting-drying cycles.

Substituting L in terms of λ and using the fact that the total area remains constant in Eq.
(4.4), the total mechanical energy per time step in terms of λ is given by (similar to the Sec.
3.3).

E = αλ
−β (4.5)

where α and β are constants. The net system energy change relative to the crack geometry
parameter λ is depicted in Fig. 4.6(a). The system energy follows a power-law relationship
with λ , with an exponent of β = 1.13. It is evident that the energy decreases over time and
stabilizes at a constant value as the crack pattern matures and approaches a Voronoi structure.

Figure 4.6(b) shows the stress distribution in each ped of the mosaic after undergoing
several wetting-drying cycles, continuing until the crack mosaic reaches maturation. The stress
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Fig. 4.6 (a) Reduction of elastic energy over successive wetting-drying cycles. (b) Distribution
of linear stress within each polygon of the final mosaics. (c) Geometrical energy corresponding
to various stress distributions within a polygon. (d) Normalized geometrical energies for
different stress distributions converge onto a single curve.

distribution follows an approximately linear pattern centered around the ped centroid, aligning
with the crack boundary geometry.

Geometrical Energy

The geometrical energy is defined as (see Sec. 3.3.1)

ε = ∑
i

εi = ∑
i

∫
x∈Ωi

w(x)∥xi − x∥2dx (4.6)

If εi is interpreted as the strain energy of the ith polygon, then the stress density function w(x)
is obtained from a linear stress distribution inside the polygon such that the stress is maximum
at the w-weighted centroid of the polygon (which is almost identical to the geometric centroid
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with a deviation < 0.01%) and zero at the boundaries. A polygon in the mosaic shrinks as
a result of the strain developed due to the moisture gradient in a ped as drying commences
from the edge towards the center. This implies that stress due to shrinkage is zero at the crack
front and highest at the centroid. Hence, a linear stress distribution in a crack ped is a simple
approximation that mimics the stress distribution in the ped. It is assumed that stress due to
evaporation from the exposed top layer is a constant for the whole mosaic. The geometrical
energy function of the tessellation is then defined as the summation of this function for all
polygons in the tessellation.

If the polygons in the mosaic contain inhomogeneities such as micro-cracks or defects,
w(x) can become a non-linear function of x. We considered two non-linear functions for w(x):
(i) w(x) = (1− x

L)
2 and (ii) w(x) = cos(πx

2L). In both cases, the system energy decreases as
time t increases, as shown in Fig. 4.6(c). It was observed that the geometrical energy in each
stress distribution scenario tends to a minimum value, following a similar pattern. Although the
energy decreases in a similar manner with a constant w(x), it stabilizes at a higher equilibrium
minimum value. However, when the geometrical energy ε of the mosaic at any time-step t is
normalized by its total energy ε0 at maturation, all the graphs in Fig. 4.6(c) converge into a
single curve, as illustrated in Fig. 4.6(d). This indicates that the convergence of the normalized
geometrical energy of the mosaic to an identical equilibrium minimum is universal, regardless
of the nature of inhomogeneity in the sample. This strongly suggests that the Voronoi diagram
represents the equilibrium geometry favored by dynamically evolving systems.

Shannon Entropy, Lewis’ and Aboav’s Laws

Various methods have been introduced over the past few decades to measure the randomness of
2-D tessellations. The degree of regularity in the Voronoi tessellation is characterized by either
the Voronoi entropy or the Shannon entropy, defined as

S =−∑
v

PvlnPv (4.7)

Here, the symbol Pv denotes the proportion of polygons that have v sides or edges, as referenced
in [87, 88, 51]. The calculation outlined in Eq. (4.7) sums up values starting from v = 3 to
the maximum edge count among the polygons found in the mosaic; thus, if the tessellation’s
largest polygon is a hexagon, then the summation’s upper boundary, v, would be 6. A perfectly
ordered structure, which comprises solely one type of polygon making Pv = 1, results in the
Voronoi entropy being null. With a 2-D random array of seed points stemming from a uniform
distribution, S has a value of 1.71 [89]. In a self-organizing system, the expectation is that the
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value of S would reduce. Despite this, given that the S value does not depend on the number of
seeds, Voronoi entropy signifies an inherent characteristic [90].

Lewis’ Law pertains to the randomness found in a polygonal arrangement and suggests
that there is a direct correlation between the average area of a standard polygon with v sides,
denoted as Av, and the value of v given by

Av = α(v−2) (4.8)

where α represents a constant of proportionality [91]. This relationship has been shown to hold
true for natural patterns across various size scales [92, 93]. The Aboav law [94–96] establishes
a connection between the average number of sides mv of a Voronoi cell that adjoins a v-sided
cell and the number v, according to

mv = a+
b
v

(4.9)

where a and b represent constants. Therefore, small polygons are inclined to be encircled by
larger ones, and vice versa.
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Fig. 4.7 (a) Change in Shannon (Voronoi) entropy over time t for a maturing crack mosaic. (b)
Confirmation of Lewis’ Law: the relationship between the average area Av of a polygon with v
sides and (v−2). (c) Confirmation of Aboav’s Law: the variation in the average number of
sides mv of polygons adjacent to a v-sided polygon.

The Shannon entropy of the maturing crack mosaic was calculated at each time step t using
Eq. (4.7). The equilibrium value reached 1.95 in our wetting-drying simulations, compared to
the reported 1.71 for Voronoi tessellation, as shown in Fig. 4.7(a). The Lewis law, as expressed
in Eq. (4.8), was confirmed for the mature crack mosaic, as depicted in Fig. 4.7(b). The average
area Av of a polygon with v sides exhibits an approximately linear relationship with (v−2),
with a slope of α = 3.057. The scaling of the average number of sides mv of polygons adjacent
to a v-sided polygon in the mature crack mosaic follows a linear trend, as predicted by Aboav’s
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law in Eq. (4.9). In our simulation, the constants a and b were found to be 5.295 and 6.967,
respectively.

4.4.2 Static Crack Mosaics

Fig. 4.8 Verification of Voronoi-like patterns. Real mud-cracks: (a) Case I, with the crack
network outlined in red. (b) Triangulation created by connecting centroids of adjacent polygons
sharing a common edge. (c) Circumcircles drawn for each triangle, with red circles containing
one or more centroids. (d) Case II of mud cracks. (e) Delaunay triangulation for the polygons.
(f) Circumcircles for all triangles, showing no centroids inside the circles in this case. (g)–(i)
illustrate the same schematic process for a honeycomb structure.

To determine whether nature favors Voronoi patterns in crack mosaics, we examine several
static examples. Figures 4.8(a) and (d) display images of actual mud crack mosaics, while Fig.
4.8(g) depicts the pattern on a honeycomb surface. The red lines outline the polygonal crack
networks. The crack plane is triangulated by connecting the centroids of adjacent polygons that
share a common vertex, as shown in Figs. 4.8(b), (e), and (h). Circumcircles for each triangle
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Table 4.1 Measures of Voronoi-ness and (n,v,D,λ ) values for the static crack mosaics.

Model p dH (pixels) n v D λ

Mud crack I 0.077 21 2.87 5.42 0.387 0.774
Mud crack II 0.00 14 2.95 5.60 0.399 0.791
Honeycomb 0.00 0 3.00 6.00 0.765 0.904

are drawn in Figs. 4.8(c), (f), and (i), with green circles indicating those that meet the Delaunay
triangulation criteria. Triangles that do not conform to Delaunay triangulation are marked with
red circles. Comparing Figs. 4.8(c) and (f) reveal that while both originate from mud crack
mosaics, the former includes non-Delaunay triangles (indicated by red circles), whereas the
latter forms a complete Delaunay triangulation (all green circles). Similarly, the honeycomb
structure in Fig. 4.8(g) also results in a Delaunay triangulation.

The p values for all three crack mosaics are presented in Tab. 4.1. The non-zero p value
in Fig. 4.8(a) indicates that the mud crack does not form a Centroidal Voronoi diagram.
Conversely, the p = 0 values for Figs. 4.8(d) and (g) suggest that while the crack pattern
aligns with a Delaunay triangulation, the corresponding dual Voronoi diagram may not match
the original crack pattern. Therefore, p serves as a simple, heuristic measure that is easy to
calculate and provides a quick but incomplete assessment of Centroidal Voronoi characteristics.

Fig. 4.9 Measuring the Hausdorff Metric, dH . (a) A real mud crack (solid black lines) is
compared with the Voronoi diagram (dashed black lines) generated from the centroids of the
polygons. The red arrow indicates the point of maximum deviation, which determines the
Hausdorff Metric. (b) The Voronoi diagram aligns perfectly with the honeycomb structure,
resulting in a Hausdorff Metric of zero.

To demonstrate the calculation of the Hausdorff Metric, Fig. 4.9(a) shows the real mud
crack from Case II (solid black lines) and the corresponding Voronoi diagram (dashed black
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lines) created using the polygon centroids as seeds. The red arrow indicates the point of
maximum deviation between the real crack pattern and its Voronoi counterpart. This distance
represents the Hausdorff Metric between the original crack network and the Voronoi diagram,
which becomes zero if the two sets are identical. In the honeycomb case shown in Fig. 4.9(b),
the real crack mosaic and its Voronoi diagram overlap perfectly, resulting in a Hausdorff Metric
of zero. As shown in Tab. 4.1, the Hausdorff Metric is zero only for the honeycomb structure.
This is expected, as the honeycomb in Fig. 4.8(d) is a regular hexagon, where each seed
coincides with its centroid. For mud cracks, the Hausdorff Metric is non-zero, although it
decreases as the mosaic becomes more Centroidal Voronoi-like.

In conclusion, the p measure can confirm that a crack network is not Centroidal Voronoi if
p ̸= 0. The Hausdorff Metric between a polygonal crack network and its corresponding Voronoi
diagram (using the centroids of the original network as seeds) is zero only if the crack network
is a Centroidal Voronoi diagram. Lastly, while not all natural crack mosaics are Centroidal
Voronoi, systems tend to evolve towards a Voronoi diagram to minimize energy.

Table 4.1 presents the (n,v,D,λ ) tuple values for each static crack mosaic, and their
positions within the topology-geometry domain are illustrated in Fig. 4.4. While the honeycomb
mosaic closely resembles a Centroidal Voronoi, both mud crack systems exhibit Voronoi-like
characteristics.

4.5 Conclusions

This study examines the dynamic evolution of crack patterns in colloidal systems, specifically
the cyclic wetting and drying of mud cracks, which alters mosaic geometries over time.
Colloidal systems in their slurry state are soft, with long response times that allow observation
of evolving mosaics. Using a spring model, we simulated the cyclic changes observed in
experimental mud systems, finding that crack mosaics transition from ‘T’ to ‘Y’ junctions over
time. These changes in topology and geometry were tracked as a trajectory in the (n,v,D,λ )

domain.
We provide a phenomenological explanation for the energy shifts during periodic wetting

and drying, showing that system energy follows a power-law dependence on λ with an exponent
of 1.13. The study confirms that the system naturally tends towards Voronoi-like tessellations,
minimizing total energy, as supported by both experimental evidence and mathematical analysis
of geometric energy.

The natural tendency of Voronoi diagrams, where each region is closest to its seed, plays a
crucial role in the evolution of crack mosaics. To quantify this progression towards Voronoi
tessellations, we introduce a measure of ‘Voronoi-ness’ using the p measure and the Hausdorff
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Metric, analyzing how crack mosaics evolve during drying-wetting cycles. Our results suggest
that mud cracks gradually mature into Centroidal Voronoi tessellations with repeated cycles,
with faster progression in systems with lower elastic modulus and longer drying intervals
between cycles.

To extend this analysis, we investigated static crack mosaics from real-world examples,
assessing their preference for Voronoi patterns. We quantified their degree of ‘Voronoi-ness’
using the p measure and Hausdorff Metric, comparing original crack networks with their
corresponding Voronoi diagrams. The polygon centroids were treated as Voronoi seeds, and the
Hausdorff Metric measured the alignment between the polygon centroids and system dynamics.

This study provides new insights into the formation and evolution of complex patterns in
cyclic systems. It is among the first theoretical and simulation-based investigations of this
process. The quantification of ‘Voronoi-ness’ offers a valuable tool for modeling tessellations in
both natural and artificial systems. Our findings deepen the understanding of energy minimiza-
tion in such systems, reinforcing the well-established theory of Centroidal Voronoi tessellations
and their connection to physical tessellations, which often exhibit similar geometric properties.



Chapter 5

Simulation of Salt Playas

5.1 Introduction

Salt playas, or salt deserts, are often adorned with intricate patterns of salt ridges that tessellate
the entire saline surface into polygons, predominantly pentagons and hexagons. These saline
pans are flat, shallow depressions covered in salt layers, typically dry except during periods
of flooding or heavy rainfall, which temporarily convert the pans into lakes [97]. Over time,
these pans undergo cyclical wetting and drying [98]. Annually, the salt ridges grow up to a few
centimeters on the surface, spanning areas from 1 km2 to several thousand km2, and overlay
thin-bedded, salt-saturated clays enriched with various minerals, which can be silty, sandy,
or more granular, as noted in geological studies [99–101]. Additionally, most playas have a
significant or unique groundwater supply. These salt playas contribute to ecological diversity,
benefiting water-bird habitats, providing economic value, and impacting human health [102].

Various theories have been proposed to explain the distinctive Voronoi-like patterns, often
using fracture or buckling models [103]. These models suggest that surface fractures tend
to form 120◦ angles as they propagate from weak points. However, not all natural fractures
exhibit Y-shaped junctions characteristic of crack mosaics [104]. The shape of cracks can
vary, influenced by material properties and environmental conditions [24]. Rigid salt crusts
can deteriorate due to extreme weather events like heavy rainfall or flooding [104], with their
growth being driven by the interplay between subsurface flow and evaporation rates. Other
research includes 2D modeling of complex fluid dynamics beneath playa surfaces [105–110].
Recently, Lasser et al. [75] introduced a 3D model that explores subsurface saline water flow
but is less explicit regarding salt crystal formation and deposition. The novelty of this work lies
in offering a comprehensive explanation for the natural evolution of the rough pentagonal or
hexagonal Voronoi-like tessellation, spanning several square kilometers of salt basins, through
a self-organizing process driven by salt ridge formation.
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Fig. 5.1 Polygonal pattern formed by salt ridges at Salar de Uyuni, Bolivia. Photo credit:
Anouchka Unel [111]

In this chapter, I will explain the intriguing formation of polygonal salt patterns by inte-
grating principles from fracture mechanics, fluid dynamics, mass transport, and crystallization.
Observations of modern salt playas show predominantly hexagonal polygons, with some pen-
tagonal, rectangular, and triangular cells emerging near the termination zones of salt basins
or in areas with significant inhomogeneities [103]. I introduce a model that simulates the
development of the ridge mosaic within a 3-dimensional system of porous material, composed
of mineral-rich clay, lying above the groundwater table. The model dynamics begin from a
time when the salt basin or playa existed without polygonal ridges, then progresses rapidly
through time, accounting for the periodic processes that lead to the current macro pattern of
salt ridges.

In the subsequent sections, I will provide a detailed description of the model, beginning
with crack formation under wetting and drying cycles, followed by the hydrodynamic equations
governing fluid flow within the crack conduits that connect groundwater to the surface, the
crystallization process, and finally, the stable formation of salt ridges. This will be followed by
a discussion of the simulation results and final conclusions.

5.2 Materials and Methods

Salt playas are often low-lying regions that were once lakes or seas, undergoing cycles of
wetting and drying. During dry periods, water evaporates from the upper surface layers. As
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desiccation occurs, these surface layers contract due to capillary pressure within the pore spaces,
eventually leading to the formation of fractures that release the accumulated stress. Since all
crack faces are planes of zero traction, a crack ceases to propagate once it intersects another
crack, resulting in a tessellation of the surface into polygonal crack patterns, akin to Gilbert
tessellation[80]. As drying progresses, desiccation stress moves downward through successive
layers, causing the surface cracks to widen and the deeper layers to fracture. The cracks that
extend from the surface to the subsurface water table serve as the main channels for water flow.
The underlying porous clay system functions as secondary conduits, though these connected
channels tend to be highly tortuous and irregular in geometry. A schematic representation is
provided in Fig. 5.2(a).

Fig. 5.2 (a) Schematic illustration of a salt playa. The grey layer depicts a salt layer atop the
clay surface. Polygonal salt ridges form along the edges of the polygonal cracks as saline water
is transported from the subsurface water table through vertical crack channels. Red arrows
indicate the direction of advection, while blue arrows represent the direction of evaporation flux.
(b) Spring model for crack dynamics. Red dots signify the vertices of peds, and blue circles
mark their centroids. The natural length d0 of the springs connecting a centroid to a vertex
is indicated by an arrow. A vertex (red) is connected via springs to the centroids of adjacent
polygons to account for elastic forces. The updated position (green) of the vertex after one
complete wetting-drying cycle is shown. Dotted springs have updated lengths d′, as indicated
by arrows.

During desiccation, water evaporates from the surface layer, and saline water from the
subsurface water table (or trapped within the clay’s interstitial pores) is drawn upward due to
advection driven by the evaporation flux. As water evaporates, it leaves behind the dissolved
salt, increasing the salt concentration in the upper layer of the channels. This can create a
concentration gradient within the conduits, where the salt concentration at the water table is
assumed to be at a fixed lower value corresponding to equilibrium salinity. This initiates a
diffusion process from the top layer to the bottom of the channel. A schematic illustrating these
processes is shown in Fig. 5.2(a). Variations in salt concentration can influence the local density
at each corresponding layer. The mass transport of salt is governed by the combined effects of
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advection and diffusion, characterized by the Peclet number Pe =UL/D, where U represents
the advection velocity, L is a characteristic length scale, and D is the diffusion coefficient of the
solution. The characteristic length is considered to be the average crack width of the system.
When the competition between advection and diffusion causes the upper layers of the crack
channels to become supersaturated, salt crystallization is promoted along the crack edges.

Let the equilibrium salinity at the water table be c0, and the critical salt concentration at
supersaturation be ccr; then the difference in salt concentration ∆c = ccr − c0 dictates the rate
of salt crystallization along the surface crack edges under a given ambient condition. Salt
crystals continue to accumulate along the crack edges, forming ridges that self-organize into
stable structures determined by the angle of repose of the salt deposits. The pattern of the
ridges mirrors the crack network pattern on the clay surface. Over an extended period, as the
clay surface undergoes multiple wetting-drying cycles, the crack network pattern evolves to
achieve a minimum energy configuration. The angles at the junctions where two or more cracks
meet shift from 90◦ to 120◦[22]. Consequently, the crack pattern, and therefore the salt ridge
pattern, becomes Voronoi-like[112]. The shifting salt ridges are considered a transient state
that stabilizes to a steady state once the crack mosaic matures. Thus, during the transient state,
evaporation and subsequent crystallization result in the deposition of a surface salt layer; the
salt ridges become visibly prominent only after the underlying crack mosaic reaches a mature
steady state.

A Voronoi diagram is a collection of regions that tessellates a plane around a set of points
(seeds) such that every point within a region is closest to its corresponding seed. Given a
finite set of points xi(i = 1 . . .n) on a subset Ω of the plane, the Voronoi regions are defined
as Ωi = {x ∈ Ω : ||x− xi||⩽ ||x− x j|| for all j ̸= i}. If the centroids of the polygons coincide
with the seeds, the Voronoi diagram is referred to as a Centroidal Voronoi diagram. Many
Voronoi-like patterns occur in nature and are often associated with optimizing material or
energy[37, 38, 61, 112]. The images of salt ridges tessellating salt playas visually resemble
Voronoi mosaics, as seen in Fig. 5.4(d). The Voronoi-ness of a real mosaic can be quantified
by comparing it with the Voronoi diagram generated using the centroids of the polygons as
seeds[112]. The Hausdorff metric1 is employed to measure the deviation of the simulated salt
ridge patterns from the corresponding Voronoi diagram generated from the centroids.

1For compact subsets A,B ⊂ R2, the Hausdorff Metric dH(A,B) is defined as
dH(A,B) = max{max

a∈A
d(a,B),max

b∈B
d(b,A)}, where d(x,C) = inf{∥x− c∥ : c ∈C}.



5.2 Materials and Methods 73

5.2.1 The Simulation Model

Initial Cracks

As water evaporates from clay or soil surfaces during desiccation, stress builds up in the matrix
(clay/soil) due to capillary pressure within the pores [24]. Desiccation leads to the fracturing
of the surface clay layers, which relieves the accumulated traction. Consequently, all crack
faces become regions of zero traction. In our simulation, the initial crack network on the
clay surface is modeled using Gilbert tessellation [80, 31]. The cracks initiate from a set of
randomly distributed points on a plane, following a homogeneous Poisson point distribution,
and propagate along a straight line until they intersect with an existing crack. Periodic boundary
conditions are not assumed. The random points represent surface inhomogeneities that act
as crack seeds. As desiccation progresses, the lower clay layers experience stress due to
the evaporation of water from the interstitial pores, causing the cracks to extend vertically
downward with each drying step [112]. These vertically extended cracks eventually serve as
conduits that connect to the subsurface water table.

Wetting-drying

A spring network, commonly utilized to simulate fracture mechanics [81, 13, 82–84], has
been employed to model desiccation resulting from cyclic wetting-drying. After the Gilbert
tessellation is generated, all polygons and nodes are identified. Hookean springs are used to
connect each node to the centroids of all polygons that share that particular node. All springs
are assumed to have a spring constant k, with a natural length d0, which is equal to the distance
between the node and the centroid of the polygon to which the spring is attached. During
desiccation, the length of each spring contracts, while during wetting, the length expands
following the rule –

dn = dn−1(1∓
a
bn ) (5.1)

Here, a and b are constants, with the negative sign representing drying and the positive sign
representing wetting. It is assumed that while the drying process causes the clay layers to
shrink, wetting allows the layers to relax slightly as water fills the interstitial pore spaces,
leading to some swelling of the clay. At the end of the nth desiccation step, the spring length
contracts to

(
1− a

bn

)
of its previous length. Similarly, during wetting, the length increases by a

factor of
(
1+ a

bn

)
. One complete wetting-drying cycle consists of N consecutive drying steps

followed by a wetting step, as shown in Fig. 5.2(b). The wetting-drying rule described by
Eq. (5.1) is based on experiments on clay evaporation rates under ambient conditions, where
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complete drying corresponds to approximately 63% weight loss [85]. The parameters a and
b represent ambient conditions and clay characteristics, respectively. During the drying and
wetting processes, the position of a node connected to the centroids of its neighboring polygons
by springs is adjusted according to –

∆x = ∑
i

∆di (5.2)

The index i denotes the ith spring connected to the node, and ∆di represents the change in its
length. Here, ∆di = (d0 −d′)d̂i, where d′ is the spring length after N consecutive drying steps
or one wetting step, and d̂i is the unit vector pointing from the node towards the centroid of its
ith neighboring polygon. The crack segments adjust according to the movements of the nodes,
and the shape of the crack network evolves through the wetting-drying cycles.

Fluid Dynamics and Crystallization

During desiccation, water evaporates from the top surface of the salt layer, creating a suction
pressure that draws water from the subsurface water table to replace the evaporated water.
A no-flux boundary condition is assumed for the crack and channel walls. The desiccation
effect is represented by a pressure P, which regulates the water flow through the channels. In
subsurface water, particularly in salt playa regions, the salinity is high. As water evaporates
from the channels, dissolved salt is deposited on the top layers of the channels, increasing their
salinity. This leads to the formation of a salt concentration gradient from the upper to the lower
layers of the channel, initiating a diffusion flow in that direction. The salinity profile of the
channels is controlled by the Peclet number Pe, which is the ratio of advective to diffusive
flows.

The fracture channel is divided into cubic grids with a grid size of dx = dy = dz = 0.1cm.
The hydrodynamic equations are solved on this grid using the finite difference method. The
crack channel in the model has a width of 0.6cm and a vertical depth of 5cm. Time is measured
in terms of the simulation time step ∆t, where ∆t ∼ 10−3 s. The evaporation flux induces a
suction pressure P in the pore channels. This evaporation flux is represented by the average
vertical component U of the water velocity on the top exposed surface of any channel due to
the pressure P. No slip boundary conditions are applied at the rock-pore interfaces through
the use of imaginary grids [113, 114]. For an incompressible, slow-moving saline solution,
the inertial term in the Navier-Stokes (NS) equation can be neglected. The hydrodynamic
equations, which are solved iteratively and coupled with each other, include the continuity
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equation for an incompressible fluid, the Stokes equation, and the advection-diffusion equation.

∇ ·v = 0 (5.3)
∂v
∂ t

+
1
ρ0

∇p−ν∇
2v =

ρg
ρ0

(5.4)

∂c
∂ t

= D∇
2c−v ·∇c (5.5)

Equation (5.4) is discretized in an implicit scheme such that

vn+1 −vn

∆t
=−∇pn+1

ρ0
+η∇

2vn+1 +
ρg
ρ0

(5.6)

from which we obtain vn+1,

vn+1 −η∆t∇2vn+1 = vn − ∆t
ρ0

∇pn+1 +
ρg
ρ0

∆t (5.7)

Using the principle of mass conservation for incompressible fluids and the aforementioned
equations, the pressure at time step (n+1) is

∇
2 pn+1 =

ρ0

∆t
∇ ·vn +

∇ · (ρg)
ρ0

∆t (5.8)

The pressure gradient ∇p is established with boundary conditions of p = P at the bottom of
the channel and p = 0 at the top grid cells of the crack channel. Here, v and p are the velocity
and pressure, respectively, calculated at the center of a given grid cell and are assumed to be
constant within that cell. The index n denotes the nth time step. For n = 0, all other grid cells
are assumed to have zero values for v and p. Water enters the channel perpendicularly from
the groundwater source, so the horizontal component of velocity in all grid cells in the bottom
layer of the channel is zero.

ρ0 denotes the density of saline water with the initial salinity concentration c0, ν is the
kinematic viscosity, and D is the diffusion constant. The density of the solution is influenced
by temperature and concentration. Given the high specific heat of water, temperature gradients
within the channel are not considered. Instead, the density of water in the buoyancy term
ρg is assumed to increase linearly with salinity, following the Boussinesq approximation:
ρ = ρ0 + s∆ρ . Here, s is a linear function of salinity, where s = 0 at the initial salinity c0

and s = 1 at the supersaturated salinity ccr. Since the salt concentration is sampled at each
time step of the flow, the impact of density on the flow rate is assumed to be conservative.
Equations (5.3–5.5) are solved iteratively until the parameters converge to within ≤ 10−5
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between successive iterations, defining the steady state. The discretization details follow the
methods outlined in other works by the authors [115, 116], extended to three dimensions.

At the top layer of the channels, if the salinity of the water near the channel wall reaches or
exceeds ccr, say ccr +δc, the excess salt δc crystallizes and deposits on the surface edge of the
channel wall. In the simulation, δc = 0.01gm/cc. The irregularities in the channel walls serve
as nucleation sites for the crystallization process. It is assumed that the latent heat released
during crystallization does not affect the water temperature due to the high latent heat of water.

The entire process of crack formation to salt crystallization can be summarized as follows:
During the drying season, as surface layers lose water due to desiccation, cracks initiate from
weak points, fragmenting the surface into crack ‘peds’. Desiccation traction can alter the
orientation of these crack lines. Experimental studies have documented these processes [22, 24,
112]. At the end of each wetting cycle, the crack channels are filled with water at equilibrium
salinity c0. As evaporation occurs, advection-diffusion flow starts within the channel, increasing
salinity in the top layers, leading to supersaturation and eventual crystallization.

In a wet cycle, although the crack spaces fill with water, the cracks do not heal perfectly
and remain as weak fronts. During the subsequent dry cycle, cracks typically reappear at these
weak fronts, and crack nodes shift to new positions due to the resulting traction. This process
continues until the crack mosaic matures.

Over many wetting-drying cycles, the crack mosaics evolve into a stable equilibrium
geometry, known as the ‘matured’ state. Salt deposits along the crack edges shift with the
changing crack patterns, covering the playas with a layer of salt. When the crack pattern
becomes static upon maturation, salt crystals accumulate along the cracked boundaries and
form ridges that become visible as polygonal mosaics. In the model, ridges are allowed to form
stable structures through self-organization, distributing the deposited crystals to the nearest
neighbor sites with lower potential energy (lower height). The self-organization of the crystals
occurs while maintaining an angle of repose of 63◦. Experimental measurements of table salt
(NaCl) from Tata Chemicals Ltd. showed an angle of repose of 58.5◦ [see Fig. 5.4(c)]. The
angle of repose depends on factors such as the chemical composition, grain size, shape, purity,
and hygroscopic properties of the salt. To simplify the simulation, our model uses an angle of
repose of approximately 63◦.

The flowchart of the simulation is outlined as follows:

1. Surface Crack Formation: Initiation of cracks on the surface due to desiccation.

2. Crack Evolution Over Time: Development and changes in the crack pattern with drying
and wetting cycles.
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Fig. 5.3 Flowchart of simulation.

3. Control of Evaporation Flux: Determination of evaporation flux which generates draw
pressure, facilitating the movement of saline water from the subsurface water table to the
surface.

4. Pressure and Velocity Field Determination: Calculation of pressure and velocity fields
within the crack channels.

5. Salt Concentration Distribution: Assessment of salt concentration in the channels
resulting from the combined effects of advection and diffusion.

6. Salt Crystallization: Deposition and crystallization of salt on the channel walls.

7. Self-Organization of Salt Ridges: Formation and stabilization of salt ridges through
self-organization, resulting in stable structures.

This process is illustrated in Fig. 5.3.

5.3 Results and Discussion

The progression of crack mosaics from a Gilbert tessellation to a mature Voronoi-like polygonal
tessellation under periodic wetting-drying cycles is illustrated through time-lapse screenshots
of a single polygon with an arbitrary shape in Fig. 5.4(a). The final 3-D simulated polygonal
salt ridges tessellating a playa, as produced by our model, is shown in Fig. 5.4 alongside a real
image of a playa lake in the Altiplano-Puna Plateau of the Andes, Fig. 5.4(d). The resemblance
between the simulated polygonal pattern and the actual ridge mosaics is striking. The lateral
striations seen along the ridge walls of the simulated 3-dimensional salt playa [see Fig. 5.4(b)]
suggest that the salt deposits self-organize to maintain an angle of repose at 63◦. A short video
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Fig. 5.4 (a) The shape evolution of an arbitrarily shaped polygon under cyclic wetting and
drying, following the spring-network model, until it reaches maturation. (b) 3-D simulation
of salt ridge patterns. Refer to supplemental video files for more details. (c) Experimental
measurement of the angle of repose for a self-organized pile of wet NaCl salt (Tata Chemicals
Ltd.), showing an angle of 58.5◦. (d) A playa lake located in the Altiplano-Puna Plateau of the
Andes. Adapted from Brooks[117].
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Fig. 5.5 Impact of evaporation-induced suction pressure on the salinity profile along the y-z
plane of a typical crack channel after 2500 time-steps. Parameters D = 0.5 cm2/s and cin = 0.1
gm/cc are kept constant. Legends indicate the salinity range. Salinity profiles for (a) P = 10
dyn/cm2, Ra = 18.3; (b) P = 15 dyn/cm2, Ra = 8.7; (c) P = 20 dyn/cm2, Ra = 6.1.

demonstrating the growth and self-organization of salt along crack fronts is provided in Ref.
[118].

The rate of salt crystallization along crack edges results from the combined influences of the
evaporation flux, which determines suction pressure P, the diffusion coefficient D of the saline
solution, the equilibrium salt concentration c0 in the subsurface water table, and the critical
salt concentration ccr at which the solution becomes supersaturated and crystallization begins.
For any given salt solution, D remains constant. Initial analysis showed that the concentration
difference ∆c, rather than c0 or ccr, is the key factor determining the onset of crystallization tcr.
Therefore, our results will be presented and discussed concerning variations in ∆c.

Figure 5.5 displays salinity distribution snapshots along a y-z section in a typical pore
channel, where the evaporative flux (and thus suction pressure) is varied while keeping the
diffusion coefficient D and ∆c constant. Figure 5.5(a) shows the profile for a low P-high D
combination, where Pe < 1. The high D value effectively redistributes salinity concentration
within the crack channel, despite the increased salinity at the top layer. When Pe ∼ 1, as shown
in Fig. 5.5(b), the competition between advective flow and gravity leads to the formation of
Rayleigh fingers, which penetrate inward from the channel’s top surface. At Pe >> 1, the high
suction pressure almost entirely suppresses the role of diffusion, as seen in Fig. 5.5(c). The
parameter values are indicated in the figure caption, and the color legend beside each figure
shows the salinity range.

Steven et al. [110] conducted 3-D resistivity measurements that revealed plumes of more
saline water descending due to the interplay between density inversions and convection effects
when their ratio is approximately 1. Our flow results in Fig. 5.5 align with Steven et al.’s
experimental findings at Pe ∼ 1. The heterogeneity in hydrogeologic processes can lead to
Rayleigh numbers Ra that vary significantly between different salt playas, depending on subsoil
and atmospheric conditions [119, 120], influencing the presence of free convection and flow
instabilities. In this study, variations in evaporative pressure, density, and diffusion constants
were chosen to allow Ra to range from 1 to 130.
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Although it is common practice to describe advection-diffusion flow processes using the
Peclet number Pe, it is noted that advection and diffusion have distinct impacts on the first
crystallization time tcr, which can be obscured when their combined effect is represented solely
by Pe. Therefore, I present and discuss the simulation results by examining P and D separately.
The evaporation flux is assumed to be vertical to the surface plane and remains unaffected by
external factors such as wind velocity, temperature fluctuations, or changes in humidity.

First crystallization time dependence on evaporation flux

In examining the dependence of crystallization on suction pressure P with varying ∆c, the
diffusion coefficient is kept constant at D = 0.1cm2/s. Since the simulation accelerates the
time evolution of a phenomenon that naturally spans months, the time of first crystallization
has been scaled by the characteristic time required for diffusion in advection-diffusion flow.
The scaled time τ = t/T is dimensionless, where T = D/U2 and t is time measured in units of
∆t. The characteristic time is calculated using the values D = 0.1cm2/s, P = 15dyn/cm2, and
U = 4.021cm/s. A log-log plot of τcr versus P [see Fig. 5.6(a)] shows a power-law relationship,
with the exponent m∆c and y-intercept n∆c both depending on ∆c.

logτcr = m∆c logP+n∆c (5.9)

The first crystallization time τcr decreases as evaporation rates and, consequently, suction
pressure P increase, following a power law. The exponent m∆c decreases linearly with ∆c, as
shown in the inset of Fig. 5.6(a). Additionally, for a given D and P, τcr increases exponentially
with ∆c. The variation of the y-intercept n∆c with ∆c is also depicted in the inset of Fig. 5.6(a).
Therefore, we can express it as:

m∆c = q1∆c+ r1 (5.10)

n∆c = q2∆c+ r2 (5.11)

where, q1, r1, q2 and r2 are functions of D and hence, constants for a given D. Combining Eqs.
(5.9 – 5.11),

logτcr = q∆c+ r (5.12)

where
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Fig. 5.6 (a) Log-log plot showing the variation of τcr with P for different ∆c values. The
insets illustrate how the scale exponent m∆c and the y-axis intercept n∆c change with ∆c. (b)
Validation of the analytical relationship between τcr and ∆c for varying P. The symbols indicate
simulated data points, while the curves are derived from Eq. (5.12). (c) Plot of τcr versus D for
various ∆c values. The insets display the variation of the slope m′

∆c and the y-axis intercept n′
∆c

with ∆c. The color legend is the same as in (a). (d) Validation of the analytical relationship
between τcr and ∆c for varying D. The symbols represent simulated data points, and the curves
are based on Eq. (5.18).
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q = q1 log p+q2 (5.13)

r = r1 log p+ r2 (5.14)

Equation (5.12) describes the relationship between the time of first crystallization τcr,
suction pressure P, diffusion coefficient D, and concentration difference ∆c. Figure 5.6(b)
shows simulation results illustrating the variation of τcr with ∆c for different values of P while
keeping D constant. The lines in the graph are derived from the analytical expression in Eq.
(5.12). The close agreement between the simulation data and the calculated values confirms the
self-consistency of the model.

First crystallization time dependence on Diffusion coefficient
Salt playas can contain salts of various chemical compositions depending on their geograph-

ical location. While halite (NaCl) is the principal salt in salt pans, other salts such as gypsum
(CaSO4 ·2H2O), mirabilite (Na2SO4 ·10H2O), thenardite (Na2SO4), epsomite (MgSO4 ·7H2O),
trona (NaHCO3 ·Na2CO3 · 2H2O), KCl, and carnallite (KCl ·MgCl2 · 6H2O) are also found
[121, 122]. The diffusion coefficient for each of these salt solutions varies under identical
ambient conditions. Given the generic nature of our model, an analysis was conducted to
examine the dependence of salt crystallization time on the diffusion coefficient of the saline
solution. We found that τcr increases linearly with increasing D, although with different slopes,
as shown in Fig. 5.6(c).

τcr = m′
∆cD+n′∆c (5.15)

As D increases, the time of first crystallization τcr increases as anticipated, since higher
diffusion rates hinder the attainment of supersaturation at the top layer of the channel for all ∆c
values. Both m′

∆c and n′
∆c, which are functions of ∆c, increase exponentially with ∆c, as shown

in the inset of Fig. 5.6(c).

m′
∆c = a1eb1∆c (5.16)

n′∆c = a2eb2∆c (5.17)

Here, a1, b1, a2, and b2 are constants determined by the evaporation flux and are functions
of ∆c. By combining Eqs. (5.15 – 5.17), we obtain:
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Fig. 5.7 Effect of the model parameters P, D, and ∆c on the crystal growth rate G versus
dimensionless time τ , following crack maturation. The crystal growth rate G approaches a
dynamic equilibrium value Geq in each scenario. The variation of Geq with each parameter is
shown in the insets of the figures. (a) Effect of varying pressure P with constants D = 0.1cm2/s
and ∆c= 0.2gm/cc. (b) Effect of varying diffusion coefficient D with constants P= 15dyn/cm2

and ∆c= 0.2gm/cc. (c) Effect of varying ∆c with constants P= 15dyn/cm2 and D= 0.1cm2/s.

τcr = a1eb1∆cD+a2eb2∆c (5.18)

Equation (5.18) is validated from the simulation results displayed in Fig. 5.6(d) where the
exponential curve (denoted by lines) drawn using Eq. (5.18) almost exactly fits the simulation
data obtained for τcr versus ∆c for constant values of P. One can conclude that the simulation
model produces self-consistent results.

Crystal growth
The impact of each variable—P, D, and ∆c—on crystal growth rate G was observed over

time on the matured crack mosaic, with other parameters held constant while varying one
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parameter at a time. In all cases, the salt growth rate initially increased and then stabilized at a
constant plateau once the system reached dynamic equilibrium [see Figs. 5.7(a) – (c)].

The crystal growth rate showed a sharp increase within approximately the first 100 time
steps, though the rate of increase varied depending on whether P, D, or ∆c was being adjusted.
To understand how this dynamic equilibrium is reached, consider that while advection raises
salinity at the top layers, it also increases fluid density. This increase in density enhances the
downward pull of gravity, which, along with diffusion, counteracts the upward pull of advection.
With the right combinations of P, D, and ∆c, dynamic equilibrium can be achieved, though at
different times for each parameter.

The equilibrium growth rate Geq increases linearly with P [see inset of Fig. 5.7(a)] but
decreases linearly with ∆c [see Fig. 5.7(c)]. In contrast, as shown in the inset of Fig. 5.7(b),
Geq increases with D up to a certain point, after which it decreases with further increases in
D. Up to the inflection point, the upward advection force outweighs the effects of diffusion
and gravity, thus increasing the growth rate. Beyond this point, however, the system becomes
limited by advection, as higher diffusion combined with gravity reduces Geq.

5.3.1 System Energy and Voronoi-ness

The total energy E of a mud playa with deep vertical cracks can be described as the sum of
three components: (i) E0, which encompasses all energy contributions except for elastic and
fracture energy; (ii) the elastic energy associated with the polygonal crack segments or ‘peds’;
and (iii) the fracture energy required to create new crack surface area. In our model, E0 is
assumed to be constant for playas under similar ambient conditions. Therefore, changes in the
total mechanical energy during the crack evolution process are attributed solely to the elastic
and fracture energy components.

As discussed in Sec. 4.4.1, the total energy can be expressed as

E = αλ
−β (5.19)

where α and β are constants. Figure 5.8(a) shows that the energy decreases with wetting–drying
cycles as the patterns become stable.

The Hausdorff metric between the salt ridge pattern and the corresponding Voronoi diagram
is recorded at each wetting-drying cycle, as illustrated in Fig. 5.8(b). This metric decreases
over time as the ridge pattern increasingly resembles a Voronoi diagram. Previous research
by the authors [112] has shown that the progression towards a Voronoi-like mosaic occurs
regardless of the initial distribution of crack seeds. Although different initial seed distributions
lead to variations in maturation time, the overall evolution follows the same functional pattern.
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Fig. 5.8 (a) Change in system energy over time. (b) Changes in the Hausdorff metric between
the salt ridge pattern and the corresponding Voronoi diagram during wetting-drying cycles.

Therefore, the evolution of salt playas involves a process of minimizing total system energy,
resulting in a transition towards a centroidal Voronoi mosaic.

5.4 Conclusions

Salt playas, with their striking hexagonal salt ridge patterns, present a complex challenge for
scientific modeling. This study explores their formation through a dynamic simulation using
a spring network model to simulate crack formation under periodic wetting-drying cycles.
The evolution of the crack mosaic from a random pattern to a nearly hexagonal Voronoi-like
structure demonstrates energy minimization, with the Hausdorff metric indicating convergence
to Voronoi geometry.

Fluid transport and salinity profiles in crack channels were modeled using the Stokes
equation and finite difference methods. The crystallization time τcr was analyzed as a function
of evaporation pressure P, salt diffusion coefficient D, and salinity difference ∆c, with results
validating the proposed model. The salinity profile showed distinct behaviors depending on the
Peclet number Pe, indicating significant growth for Pe ≥ 1.

Crystallization growth rate G was tracked, showing an initial sharp increase followed by
a dynamic equilibrium Geq. While Geq increased linearly with P and decreased with ∆c, it
showed a peak with D, beyond which the rate decreased due to the interplay of advection,
gravity, and diffusion.

Overall, the model effectively replicates the Voronoi-like mosaic seen in real salt playas,
highlighting that the non-linear processes involved aim to minimize system energy.





Chapter 6

Stress-Induced Fracture in Porous Systems

6.1 Introduction

The investigation of fracture processes and their relationship to material properties has remained
a significant research focus for engineers and scientists since the development of Griffith’s
theory [1], which established the criteria for materials cracking to form new surfaces as a
mechanism to release accumulated tensile or compliant stress. Since then, both experimental
and theoretical studies have demonstrated that cracks can initiate as isolated failures that may
coalesce, leading to crack avalanches of varying sizes and patterns influenced by the intrinsic
material properties and external loading conditions [24, 123]. The fracture behavior of porous
systems such as granular solids, rocks, and colloidal systems, which are prevalent in everyday
life, is highly dependent on factors such as pressure, grain size and shape distribution, and
the micro-geometry of pore spaces [124–126]. These systems exhibit fracture complexity
distinct from that of ordered metallic systems [127]. Experimental observations in porous
systems suggest that failure begins with the nucleation of micro-cracks, which are accompanied
by bursts of acoustic energy [128, 129]. These micro-cracks grow and merge, ultimately
leading to the macro-failure of the material [130, 131]. Failure modes can range from axial
splitting to shear band formation, reflecting a non-linear transition from brittle to ductile fracture
[132, 133]. Large-scale simulations employing lattice models [134–137] and statistical analysis
have advanced the understanding of the geometrical and topological characteristics of fractures
and scaling behavior [138]. Before complete system failure, avalanches of micro-cracks are
observed in various materials, such as wood [139], glass [140], volcanic activity [141], and
earthquakes [142] [143, 144]. Quasi-static lattice models like the random fuse model [145, 146]
and the spring-network model [147, 84] are often used to simulate fractures, but they face
limitations in explicitly capturing deformable contacts, slips, rotations, and discontinuities.
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In this study, we investigate fracture statistics and their dependence on material properties
in a porous system subjected to axial compression using the Distinct Element Method (DEM)
[148, 149]. Spherical grains of various sizes are allowed to fall under gravity, forming a
three-dimensional structure, with their radii randomly chosen from a log-normal probability
distribution. Compressive loading is then applied to the system in a quasi-static manner.

The compression can be visualized as the effect of a rigid wall in contact with the upper
surface, descending with velocity Vw. It is assumed that the grains deform under compressive
stress, causing contacts to change from points to planes. The grains are cemented at their
contact points, with the cementation material having elastic properties distinct from the grains
themselves. We track the effects of loading by calculating the stress and strain accumulation,
the number of micro-cracks formed up to the crack avalanche, and the eventual development of
one or more system-spanning percolating cracks. This study explores the dynamic cracking
process as a function of the elastic modulus and breaking threshold of the cementing material
between grains while other factors—such as grain size distribution, elastic properties of the
grains, and wall velocity—are held constant. The macroscopic load is borne by the grain and
cement skeleton in the form of force chains propagating from one grain to another across
contacts. DEM is used to calculate the forces, which may be compressive, tensile, or shear in
nature.

Analyzing the cumulative crack statistics reveals two distinct cracking regimes: (i) a zone
of micro-crack formation, followed by (ii) a zone of micro-crack merging, culminating in
system-spanning percolating cracks. Under constant quasi-static loading, the transition from
one zone to the other occurs at a critical value of the elastic property of the cementing material.
Notably, both this critical transition point and the onset of total percolation exhibit scaling
behavior with respect to the elastic property of the cementing material, though with different
exponents. Further analysis of individual micro-crack bursts shows that the largest burst follows
a power-law distribution relative to the breaking threshold of the cementing material. The
scaling behavior of load distribution during cracking for fixed material properties has been
reported previously [150]. Additionally, Ferenc et al. [151, 152] have demonstrated that
fragment mass follows a scaling behavior with a dimensionless energy measure, which depends
on material properties.

In the following sections, I will detail the basic principles of DEM and the methodology for
structure generation, followed by sections discussing our results, the associated discussion, and
finally, the conclusion of this work.
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6.2 Distinct Element Method

The Distinct Element Method (DEM) models granular materials as an assembly of distinct
particles, each governed by fundamental principles of physics and mechanics. The particles are
represented as spherical rigid bodies with finite mass, capable of moving independently, both
translating and rotating. DEM calculations alternate between applying Newton’s second law to
the particles and updating contact forces via a force-displacement law. Newton’s second law
governs the translational and rotational motion of each particle, accounting for contact forces,
applied forces, and body forces. Meanwhile, the force-displacement law updates the contact
forces that arise from particles’ relative motion at each point of contact.

The cementing behavior of the material is modeled by assigning parallel bonds with stiffness
between particles in contact or close proximity. These bonds transfer both force and moment,
and they can break when the tensile or shear stress on the bond exceeds its respective strength.

The assumptions in DEM are:

• Particles can translate and rotate independently.

• Two particles, A and B, are considered to be in contact if the distance d between their
centers satisfies d ≤ RA +RB.

• Particles interact solely through contact points, with each contact involving only two
particles.

• Particles are allowed to overlap slightly at the contact point, but the overlap is small
relative to the particle size.

• Bonds with finite stiffness and breaking thresholds exist at contacts, and these bonds
break if their thresholds are exceeded.

• Newton’s second law is applied to determine the translational and rotational motion of
each particle, and the force-displacement law updates the contact forces based on their
relative motion at the contact points.

• The dynamic behavior is modeled by updating the particle positions and bond states at
each time step ∆t, which is small enough to assume constant velocity and acceleration.

• ∆t is chosen such that disturbances caused by a particle do not propagate beyond its
nearest neighbors within a single time step.

The DEM treats particle interactions as a dynamic process, where equilibrium states are
achieved when the internal forces balance. When an external force is applied to the top surface
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Fig. 6.1 Schemaic diagram showing spherical grains constitute a porous system. The grains are
cemented at their intersections. (b) Forces acting on particles in DEM.

of the structure, disturbances occur due to relative movements between particles. The speed
at which these disturbances propagate depends on the distribution of particle contacts and the
material properties. The force-displacement behavior at each contact is governed by the normal
stiffness kn, the shear stiffness ks, and the coefficient of friction µ . The net normal force Fn and
net shear force Fs are calculated based on the approach described by Potyondy et al. [149].

The contact force Fi exerted by particle A on particle B is decomposed into normal and
tangential components relative to the contact plane:

Fi = Fnni +Fsti (6.1)

where Fn and Fs represent the normal and shear components, respectively, and ni and ti are the
corresponding direction vectors defining the contact plane.

The normal force is given by:
Fn = KnUn (6.2)

where Un is the overlap between two spheres [as shown in Fig. 6.1(a)], and Kn is the normal
stiffness constant of the particles.

The change in shear force ∆Fs due to a relative shear displacement ∆U s is expressed as:

∆Fs =−Ks
∆U s (6.3)

where Ks is the shear stiffness of the particles.
At any time step of duration ∆t, the relative displacement is calculated as:

∆Ui =Vi∆t (6.4)
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where Vi is the contact velocity, which depends on both the translational and rotational velocities
of the ith particle.

Similarly, the relative shear displacement is given by:

∆Us = (Vi −V n
i )∆t (6.5)

If a gap exists between the particles, meaning Un ≤ 0, both the normal and shear forces become
zero.

The cement-based bonds between particles are modeled as elastic springs uniformly dis-
tributed over a circular cross-sectional area, capable of transmitting both force, Fi, and moment,
Mi, between the particles. Each bond has a normal stiffness per unit area, kn, and a shear
stiffness per unit area, ks, as well as tensile and shear strengths, σc and τc. The radius of a
parallel bond, R̄, is determined by the equation:

R̄ = λ min(RA,RB) (6.6)

where λ is the bond-radius multiplier, which was kept constant at λ = 1.0 throughout the
simulation.

As with the contact forces, the total force and moment in each bond are resolved into
normal and shear components relative to the contact plane. Initially, the forces and moments
on the bonds are set to zero. As the particles experience relative displacements and rotations,
the elastic force and moment values increase and are applied to the bonds. These incremental
changes in forces and moments are expressed as:

∆F̄n = knA∆Un (6.7)

∆F̄s = −ksA∆U s (6.8)

∆M̄n = −ksJ∆θ
n (6.9)

∆M̄s = −knI∆θ
s (6.10)

where ∆θ n and ∆θ s are the rotational increments in the normal and tangential directions,
respectively, while A, I, and J represent the cross-sectional area, the moment of inertia, and the
polar moment of inertia of the bonds, respectively.

The maximum stress on a bond is calculated using beam theory:

σ
max =

−F̄n

A
+

|M̄s|R̄
I

(6.11)

τ
max =

|F̄s|
A

+
|M̄n|R̄

J
(6.12)
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If the maximum tensile stress exceeds the tensile strength (σmax ≥ σc) or the maximum shear
stress exceeds the shear strength (τmax ≥ τc), the spring breaks.

The ratios (Kn/Ks) and (kn/ks) are linked to the Poisson ratio of the material, and increasing
these ratios for a given grain shape and packing increases the material’s Poisson ratio.

6.3 Structure Generation

To study fractures in both ordered and disordered porous materials, two different sample
generation techniques were employed.

The ordered samples were created by arranging monodispersed spheres in a hexagonal
symmetry. Figure 6.2(a) illustrates this hexagonal structure, where each particle has a radius of
0.036 cm.

For the disordered porous system, spherical particles with an elastic modulus Y were
deposited under gravity into a 3-dimensional box with dimensions of 1×1×1 cm3. The radii
R of the spherical particles were randomly selected from a log-normal probability distribution.
These particles were allowed to settle under gravity using DEM, forming a 3-dimensional
granular porous medium. The disordered system used in this study had a log-normal distribution
of radii with a mean radius of 0.04 cm and a standard deviation of 0.003 cm, as depicted in Fig.
6.1(b).

Fig. 6.2 (a) Material generated by hexagonal packing of monodispersed spheres with a radius
of 0.036 cm. (b) 3-dimensional rectangular parallelepiped constructed from spheres with a
log-normal distribution, mean radius of 0.04 cm, and standard deviation of 0.003 cm.
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6.4 Results and Discussion

After generating the structures, axial compressive stress was applied to the top surface of the
rectangular parallelepiped. A rigid wall was assumed to contact the top surface, descending at
a velocity of Vw. It was further assumed that any sphere within the system could detach if all
the bonds connecting it to neighboring spheres were broken. In line with the DEM scheme,
the bonds between spheres could deform through either elongation or twisting. When a bond
breaks, the load is redistributed among the remaining intact bonds. As more micro-cracks
develop (i.e., as more bonds break), the stress on the remaining bonds increases.

Since the normal and shear stiffnesses are linked through the Poisson ratio of the material,
the relation is given by:

kn = νks = kb (6.13)

where ν is a constant, set to a value of 2.5. Additionally, the shear strength and the normal
strength were taken to be the same, i.e., σc = τc.

6.4.1 Fracture in the Hexagonal Arrangement of Spheres

Figure 6.3 shows the snapshots of the hexagonal structure at different times when subjected to
uniaxial compression. The structure undergoes a failure, and the crack planes can be noticed in
Fig. 6.3(c)

Fig. 6.3 Snapshots of the material at different times under compressive loading. Stress on the
particles is color-coded.
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The stress-strain behavior is illustrated in Fig. 6.4. Initially, within the elastic limit, the
stress exhibits a linear relationship with strain, adhering to Hooke’s law. This phase represents
the material’s ability to return to its original shape upon unloading. As the strain increases
beyond this region, the material begins to experience irreversible deformations. Approaching
the failure point, micro-cracks initiate and propagate, weakening the material’s structural
integrity. At the point of failure, a sudden avalanche of bond breakages is observed, Fig. 6.4(a),
signifying a rapid release of stored energy. This cascade of bond failures leads to a sharp
drop in stress, indicating the material’s transition from an elastic to a fractured state. The
behavior beyond the failure point can be associated with the formation of large-scale fractures
or complete structural collapse, depending on the material properties and loading conditions.
Figure 6.4(b) compares two materials with different Young modulus. The curve is steeper for
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Fig. 6.4 (a) Typical stress-strain behavior of the generated materials. The red bars represent
the number of bonds broken. (b) Stress-strain curve for different Young modulus, Y . A higher
Young modulus shows a steeper slope.

the material with a higher Young modulus, as expected. An animated video illustrating the
fracturing process can be found in Ref. [153].

6.4.2 Fracture in Disordered Systems

Although crack formation can be affected by all the intrinsic characteristics of grain and
bonding material and the external loading, we only vary the cementing bond properties while
studying the disordered systems. Thus, the grain (sphere) elastic properties are kept constant in
this work, with Y = 5 MPa. We investigated crack statistics by (i) varying the stiffness constant
kb of the bond spring, keeping the bond spring threshold σc constant; (ii) varying the spring



6.4 Results and Discussion 95

threshold σc of the bond while keeping the spring stiffness kb constant. The wall velocity is
kept constant at 1 cms−1.

Fixed Bond Strength, Varying Stiffness Constant

Under the condition of fixed bond strength σc = 100 MPa and different values of stiffness kb,
the number of micro-cracks was plotted with increasing axial strain as shown in Fig. 6.5(a).
The number of micro-cracks Nkb sharply increased with an increase in strain up to a maximum
peak value Nkb

max, after which the crack number decreased slowly, showing a long tail. Nkb
max was

found to decrease with decreasing kb, but had longer tails. Higher bond stiffness of the springs
representing the cementing material implies that many springs in the system can accumulate
strain for a greater number of time steps before the breaking threshold is reached. The crack
burst sizes are bigger, contributing to the higher value of Nkb

max observed in this case. The number
of intact springs that survive after the maximum is smaller. These, too, survive a short time due
to accumulated strain, so a shorter tail is observed here. It is observed that the strain value εmax

corresponding to Nkb
max decreased with increasing bond stiffness kb as expected. Plotting the

variation of both εmax and Nkb
max with bond stiffness kb showed a power-law dependence in each

case as shown in Figs. 6.5(b) and (c).

0 20 40 60

ε(%)

0

50

100

150

N
k
b

(a) kb : 100M
kb : 300M

101 102 103

kb

10−1

100

101

ε m
a
x

(b)

εmax = 108.2k−0.766
b

10−1 100 101

εmax

101

102

103

N
k
b

m
a
x

(c)

Nkb
max = 63.4ε−0.689

max

Fig. 6.5 (a)Variation of the number of cracks Nkb versus axial strain for different bond stiffness
and constant bond strength σc. (b) Log-Log plot of strain at maximum crack number Nkb

max

versus bond stiffness kb. (c) Log-Log plot of strain at maximum crack number Nkb
max versus

corresponding strain.

The asymmetric distribution of the micro-cracks may be explained in the following way:
with an increase in axial strain, the initial fracturing is more brittle, as manifested in the sharp
growth rate of cracks. However, the cracks that begin as small bursts rapidly spread through
the system as more and more load is shared by the intact bonds to compensate for the loss of
broken bonds. Beyond a critical strain εmax, the micro-cracks start merging, and the system
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moves towards a percolating failure with fewer bonds getting broken with a further increase in
strain. For our log-normal particle size distribution, the graphs in Figs. 6.5(b) and (c) indicate
that the strain value at the maximum number of micro-cracks follows a power-law trend with a
negative exponent of 0.766 as the bond stiffness increases. Additionally, a log-log plot of the
maximum number of micro-cracks versus the corresponding strain value for different kb also
demonstrates a power-law relationship with a negative exponent of 0.689.
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Fig. 6.6 Crack statistics for constant spring threshold σc = 100 MPa, and variable bond stiffness
constants kb = 50,100,200,300,600. Values are in units of MPam−1. (a) Cumulative micro-
cracks versus strain percentage. The dotted line is indicative of the transition between different
cracking modes for kb = 300 MPam−1. (b)Variation of εknee with kb follows a power law with
exponent mknee = −0.397 (c) Variation of εperc with kb follows a power law with exponent
mperc =−0.294

Figure 6.6(a) shows that when the spring stiffness kb is varied, keeping the bond breaking
threshold σc = 100 MPa constant, the cumulative cracks in the system increase with the
percentage of strain in the system. Every curve shows two distinctly different growth regions
about a knee point, the strain at the knee being denoted by εknee. Interestingly, a comparison
of Figs. 6.5(a) and 6.6(a) show that the maximum number of micro-cracks corresponds to the
knee point strain εknee. The endpoint of each curve corresponds to the point of percolation in
the system; the corresponding strain is denoted as εperc. Both εknee and εperc decrease with
increasing values of kb, and show a power-law dependence, Figs. 6.6(b) and (c), of the form:

εknee = Ak−mknee
b (6.14)

and
εperc = Bk−mperc

b (6.15)

The exponents have values mknee = 0.397 and mperc = 0.294; A and B are constants character-
istic of the system. Combining Eqs. (6.14) and (6.15), we get a relation between εknee, εperc,
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mknee and mperc given by
εperc = Dεknee

m (6.16)

Thus Eq. (6.16) indicate that εknee has a power-law scaling with εperc with the exponent
m =

mperc
mknee
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Fig. 6.7 Log-log plot of εperc versus εknee (a) For constant breaking threshold σc = 100 MPa
and varying stiffness constant kb. A power-law behavior is indicated with exponent m = 0.739.
(b) For constant stiffness constant kb = 400 MPam−1 and varying breaking threshold σc. A
power-law behavior is indicated with exponent m = 0.721

Using the data points from our simulation, we construct the variation of εperc versus εknee

as shown in Fig. 6.7(a). A power-law behaviour is observed with the exponent m = 0.739
agreeing almost exactly with the theoretical value of 0.740. We repeated this study with
two other constant bond strength values of σc = 500 MPa and 1000 MPa, and variable bond
stiffness constants. The nature of the cumulative cracks versus strain graphs showed similar
crack statistics as observed for σc = 100 MPa.

Fixed Stiffness Constant, Varying Bond Strength

In the situation where crack statistics on the same system was studied for a fixed bond stiffness
constant kb = 400 MPam−1 and the breaking threshold of spring σc varying from 50 MPa to
1000 MPa, the variation of cumulative micro-cracks increased with axial strain as expected.
Similar to the situation where σc was fixed and kb varied, two distinctly different growth
rates were observed across a knee strain, Fig. 6.8(a). The strain at the knee point ε ′knee and
the percolation point ε ′perc for each plot of bond strength was noted. These values, when
plotted versus bond strength on a log-log scale, could be fitted approximately by a straight line
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indicative of a scaling behavior, Figs. 6.8(b) and (c). The exponents m′
perc and m′

knee had values
0.206 and 0.274 respectively.
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Fig. 6.8 Crack statistics for constant spring stiffness kb = 400 MPa, and variable spring breaking
thresholds σc = 50,100,200,400,600,800,1000. Values are in units of MPa. (a) Cumulative
micro-cracks versus strain percentage. (b)Variation of ε ′knee with σc follows a power law with
exponent m′

knee = 0.274 (c) Variation of ε ′perc with σc follows a power law with exponent
m′

perc = 0.206

Using the same procedure as described between Eqs. (6.14) to (6.16), a relation between
ε ′knee, ε ′perc, m′

perc and m′
knee was constructed :

ε
′
perc = D′

ε
′
knee

m′
(6.17)

Thus Eq. (6.17) is similar to Eq. (6.16), i.e., ε ′knee has a power-law scaling with ε ′perc with the
exponent m′ = 0.752. Using the data points of our simulation, we constructed the variation of
ε ′perc versus ε ′knee on a log-log scale as shown in Fig. 6.7(b) for constant bond strength kb = 400
MPam−1. A power-law behavior between the parameters was obtained with the exponent
m′ = 0.721, which is close to the theoretical predicted value of 0.752.

It may be recalled that the systems under examination are highly disordered. The size
distribution of the grains adds to the complexity, and the Distinct Element Method (DEM) can
be computationally expensive when applied to 3-dimensional systems. The difference between
the theoretical and experimental values of the exponents m and m′ can be better matched when
crack statistics are calculated on a larger system.

From our results and analysis so far, we propose that the scaling relation between the strain
at the knee εknee and at the percolating point εperc as given by Eqs. (6.16) and (6.17), can
have useful applications as an indicative precursor to the percolating point of a 3-dimensional
system. Micro-cracks are detected as acoustic signals in experiments. As DEM factors in
individual particle interactions and resultant deformations in relation to the rest of the system,
with all system parameters known, the exponent m/m′ for a porous system can be estimated
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accurately. One can detect εknee via acoustic emissions and can have an estimate of εperc.
Though a percolation plane ultimately leads to complete failure in a 3-dimensional structure,
the pre-knowledge of εperc certainly shall act as a red flag.

6.5 Conclusions

In this work, we investigated how material properties influence crack formation in a porous
granular system under compressive strain. Using a 3D disordered model, spherical particles
were bonded by cement with differing elastic properties. Compressive strain was applied, and
the resulting stress-strain progression and crack dynamics were analyzed to understand how
variations in bond stiffness and strength affect micro-crack development and the onset of a
percolating crack.

Two scenarios were studied: (1) varying bond stiffness while keeping bond strength constant
and (2) varying bond strength while keeping stiffness constant. In both cases, the cumulative
crack count increased with strain, but the rate of increase shifted notably at a critical strain
value, εknee. This critical strain decreased with higher bond stiffness and increased with greater
bond strength, following a power-law relationship with distinct exponents in each case. The
strain at percolation, εperc, followed a similar pattern, revealing a robust scaling relationship
between εknee and εperc as a function of bond properties.

This scaling law, tested across different cementing materials, suggests that predicting the
onset of percolation cracks is possible by monitoring micro-crack statistics. Given known
values of stiffness and strength for common materials and exponents derived from simulations,
this relationship enables estimating the strain threshold before percolation cracking – and
ultimately system failure – occurs. Identifying this threshold provides an early warning of
system damage before complete fragmentation in 3D systems.





Chapter 7

Fluid Flow in Porous Media

7.1 Introduction

Understanding flow through porous media remains a vibrant research area due to its significant
real-world applications. This includes subsurface flows vital for agriculture, oil and gas
extraction, CO2 sequestration in sedimentary rocks, and various engineering uses. Fluid
movement through the pore space of a 3D granular structure presents a complex non-linear
challenge that relies heavily on modeling and simulation for solutions. Laboratory experiments
often fail to fully replicate in-situ conditions, serving only as approximate guides. In real
scenarios, like sedimentary rocks, fluid transport is characterized by system properties such
as permeability or conductivity. These macro-scale properties, however, are influenced by
micro- to mesoscale factors like grain size and shape, which can vary greatly. Additionally,
fluid behavior in the porous matrix is impacted by surface tension, while viscosity determines
whether the flow exhibits capillary or Saffman-Taylor instabilities [154, 155].

Continuum-scale models that connect permeability and capillary pressure typically assume
fluid saturation [156, 157], and their results can depend on both the material and the process
[158, 159]. To create constitutive models that are more widely applicable, a geometric descrip-
tion of the pore space and its relationship to transport properties is necessary. Efforts have
been made to link the permeability of porous systems to the Euler characteristic, a topological
measure, in 2D porous media [160], where grain overlap plays a crucial role. However, in real
3D systems, grain overlap is not as significant. Katz and Thomson [161] suggested that perme-
ability (k) and electrical conductivity (σ ) in porous systems are related through a characteristic
length (lc) of the system by

k = clc2(
σ

σ0
) (7.1)
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where c is a constant that depends on pore geometry, and lc represents the critical pore diameter
that prevents particles with an average diameter larger than lc from percolating through the
system. Additionally, σ0 is the fluid conductivity. Archie’s law, which provides an empirical
relationship between conductivity and the porosity of a porous rock, is most accurate near the
percolation threshold of the porous medium and has been validated through simulations [162–
164], though there are exceptions [165–167]. Interfacial energy and fluid topology also play
crucial roles in influencing fluid flow through porous media [168–172]. More general solutions
have been derived using integral geometry techniques [173–181]. For example, McClure et al.
[182] applied a non-dimensional relationship based on the Minkowski–Steiner formula [183]
to predict fluid flow based on the geometric characteristics of various porous rocks.

This work draws inspiration from Hadwiger’s characterization theorem, which suggests
that the structure of finite unions of convex subsets in 3-dimensional systems can be described
using no more than four invariant measures, known as the Minkowski functionals [184]. Given
that the grains in porous media can generally be assumed to be convex, it is reasonable
to expect that transport properties, such as permeability, may be connected to these basic
geometric invariants. To explore this, we simulated 3D porous structures—both stochastic and
deterministic—using specific construction algorithms. For the stochastic structures, particle
sizes followed a distribution around a mean size, while the deterministic structures used particles
of constant size, which varied over a range.

We calculated the permeability of each structure by simulating incompressible fluid flow
under constant pressure gradients, conserving mass and momentum. The topological invariant,
Euler characteristic (χ), was determined for the pore space, along with the characteristic
critical length (lc), integral mean curvature (H), and the average cross-sectional area of the
pore space. Our study found that permeability followed a power-law relationship with each of
these geometric invariants. This consistent behavior across invariants led us to formulate an
empirical relationship between permeability (k) and a combinatorial function (F) derived from
the four geometric characteristics, which displayed a power-law behavior regardless of the pore
size distribution.

Remarkably, the exponent of this scaling relationship was nearly identical for both a 3D
self-organized disordered system at equilibrium and a 3D deterministic system with geometric
symmetry. To our knowledge, this is the first instance of a unified relationship linking fluid
flow with all Minkowski functionals, characterized by a unique exponent for 3D disordered
porous systems. The relationship was constructed by systematically examining the variation of
permeability with each geometric descriptor. Systems with cubic and hexagonal symmetries
represented the upper and lower bounds of the scaling relations, while disordered systems fell
between these bounds.
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Our proposed scaling relations proved robust to variations in pore size and micro-geometry,
with the exponent remaining consistent across both stochastic and deterministic systems.

In the following sections, I will outline the methodology for constructing both stochastic
and deterministic 3D porous systems, the determination of the flow characteristic (k), and the
computation of each invariant geometric measure for every structure. This will be followed by
the presentation of results, discussion of the scaling relationship, and a conclusion summarizing
our findings and future directions for this research.

7.2 Porous Structure Generation

To simulate fluid flow through porous structures, we generated a 3-dimensional porous stochas-
tic structure and modeled the flow of a single fluid using a numerical finite difference solution
of the steady-state Navier-Stokes equation. Since most naturally occurring porous rocks exhibit
a log-normal particle size distribution [185], spherical particles with radii R were randomly
selected from a log-normal distribution with a mean radius ⟨R⟩ and standard deviation s. The
radii of these particles were constrained within the range of ⟨R⟩/4 to 5⟨R⟩ to avoid extreme
particle sizes.

In addition to log-normal distributions, we constructed a second class of 3-dimensional
disordered systems using a normal distribution for particle sizes. The particles were allowed to
settle under gravity within an imaginary cubic box of size L = 0.5 cm. The forces acting on the
particles during the generation of these structures were computed using the Distinct Element
Method (DEM). By varying ⟨R⟩ and the standard deviation s, we could generate different
samples, with approximately 2000 particles used to create each sample, depending on the value
of ⟨R⟩.

For comparison, deterministic 3-dimensional structures were also generated, using spheres
of equal radius and contained within cubic boxes of size L. These deterministic structures were
examined for two symmetric arrangements: (i) hexagonal and (ii) cubic. Six different radii
were selected to generate samples for each symmetry configuration.

7.3 Geometric Characterization of Porous Medium

Regardless of the total porosity of the samples, we considered the effective porosity φ0 of
the sample spanning channels, as this porosity alone contributes to fluid flow. To identify
sample spanning clusters and the geometrical characteristics of the system, we superposed a
256× 256× 256 cubic grid on the 3-dimensional structure with grid length δx ∼ 0.002 cm.
The porous structure was discretized by assigning a grid cell a value of 1 if at least 50% of
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the cell was filled by the matrix. Otherwise, the grid cell was given a value of 0. This process
converted the porous structure into a binary format.

An effective critical area Ac =
π

4 lc2 was calculated after the determination of the critical
length scale lc - defined as the maximum diameter of a spherical particle that can percolate
through the system spanning channels. After all the system-spanning channels were identified
via the Hoshen-Koppelmann algorithm, a sorting algorithm was used to determine lc for each
sample.

The topological invariant, Euler Characteristic χ defined as an alternating sum of Betti
numbers :

χ = β0 −β1 +β2 −·· · (7.2)

where the β0 represents the number of connected components, β1 is the 1-dimensional holes or
loops, β2 represents the 2-dimensional voids or cavities, and so on. For 3-dimensional porous
systems constructed only by spheres Eq. (7.2) can be simplified to [186]

χ = M− I +N (7.3)

where M is the number of isolated pores, I refers to the number of intersections between grains,
i.e., the number of points where two grains touch each other at a point, and N is the number of
grains completely enclosed by the pores. The Euler characteristic can be considered to be a
measure of connectivity that yields positive values for structures with low connectivity, where
M (isolated pores) exceeds I (intersections), and negative values for more highly connected
structures, where M is less than I. In the DEM scenario of particles falling under gravity for
the 3-dimensional construction, there is a finite probability of the intersections being circles.
However, the particle overlap is assumed to be negligibly small compared to particle size and
hence neglected. The Euler Characteristic χ provides a measure of the connectivity in the
sample and is very relevant for fluid flow studies.

The integral mean curvature H of a particle is given by the surface integral

H =
∫

κ1 +κ2

2
ds (7.4)

where κ1 and κ2 are the principal radii of curvature of the grain. For a spherical grain
κ1 = κ2 =

1
R . The mean curvature of the void surface of an assembly of spherical particles is

H = ∑
i

1
Ri

4πRi
2 = 4π ∑

i
Ri (7.5)
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7.4 Fluid Transport

Fluid transport in a porous structure under a suitable pressure gradient is described by the
Navier-Stokes equation

ρ
δV
δ t

+(V.∇)V+∇P−µ∇
2V = fe (7.6)

where V, P and fe represent the velocity, pressure, and external force per unit volume respec-
tively, ρ and µ are respectively the density and dynamic viscosity of the fluid. Neglecting the
inertial term and assuming no external forces acting on the fluid, Eq. (7.6) simplifies to

δV
δ t

=− 1
ρ

∇P+η∇
2V (7.7)

where η = µ

ρ
is the kinematic viscosity. For an incompressible fluid, the equation of continuity

is
∇.V = 0 (7.8)

Equations (7.7) and (7.8), when solved together, give the steady state condition of flow in the
structure.

The Hoshen-Kopelman algorithm [187] was employed to identify the channels spanning the
sample. The pressure and velocity fields were solved using the approach outlined by Sarkar et al.
[114], with certain modifications made to better suit the specific requirements of our problem.
The discretized space and time versions of Eqs. (7.7) and (7.8) were iteratively applied to reach
steady-state flow conditions, as described in Sadhukhan [85]. Steady state was considered
achieved when the velocity difference between consecutive time steps of iteration was less than
or equal to 10−9. Our simulation involved a single fluid injection, and the steady-state velocity
and pressure values at all points along the spanning transport channels were recorded. The
permeability was calculated according to Darcy’s law

q =
k
µ

∇P (7.9)

where q is the flux, k the permeability, µ the viscosity and ∇P the pressure gradient across the
sample.

7.5 Results and Discussion

The 3-dimensional porous structures were generated as previously described. We constructed
two stochastic structures with particle size distributions selected from (i) log-normal and (ii)



106 Fluid Flow in Porous Media

normal distributions. These distributions were centered around mean particle sizes ⟨R⟩ ranging
from 0.02 cm to 0.045 cm, with standard deviations s varying from 0.0025 cm to 0.015 cm. All
results were averaged over 30 configurations. Since the macroscopic cubic structure’s length, L,
was kept constant, the number of particles, N, varied from 419 to 3656, depending on particle
sizes. Additionally, we constructed two deterministic porous structures with (i) cubic and (ii)
hexagonal symmetries. Figure (7.1) shows representative images of the four different types of
3D porous structures generated for this study.

Fig. 7.1 3-dimensional porous structures generated using DEM. (a) Deterministic structure
having cubic symmetry (b) Deterministic structure having hexagonal symmetry (c) Stochastic
structure with particle size chosen from a log-normal distribution. (d) Stochastic structure with
particle size chosen from a normal distribution.

After structure generation, the sample spanning void clusters were identified to study fluid
transport. The direction of the pressure gradient was identified as the z-axis of the system and
was identical to the direction of particle deposition. For the stochastic structures, we determined
the 2-point density correlation function S2(r), defined by

S2(r) = ⟨p(r′)p(r+ r′)⟩ (7.10)
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where p(r) defines the probability of finding a void at position r. For the stochastic systems, the
variation of S2(r) versus r computed along each axes for a typical sample, Fig. 7.2(a), indicates
that the sample was isotropic in the transverse (x-y) plane. A slight anisotropy along the z-axis,
the direction of grain deposition, is indicated.
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Fig. 7.2 Typical micro-geometric characteristic of 3-dimensional stochastic porous systems.
Lognormal stochasticity is shown here. (a) Variation of 2-point correlation function S2(r) with
r along principle axes. (b) Mean square displacement ⟨r2⟩ with time t shows subdiffusive
behavior.

To understand the pore micro-geometry, we studied diffusion using a random walk algo-
rithm; details are available in [188]. The mean square displacement ⟨r2⟩ showed a power law
variation with time t, Fig. 7.2(b), indicative of subdiffusive behavior.

The geometric characteristics, including the Euler characteristic (χ), mean integral curva-
ture, and effective porosity, were computed for each generated sample as discussed earlier. The
permeability (k), a measure of fluid flow, was then determined for each sample. Steady-state
flow was achieved by iteratively solving the space- and time-discretized versions of Eqs. (7.7)
and (7.8), after which the pressure and velocity at every point in the sample’s spanning void
cluster were calculated.

To illustrate the pore space in our generated systems, Fig. 7.3(a) shows the porous structure
of a disordered sample with a log-normal particle size distribution. Figure 7.3(b) depicts the
percolating path through which a sphere of diameter lc can freely pass. Figures 7.3(c) and (d)
present the pressure distribution and the steady-state velocity field within the porous space
when fluid flows under a constant pressure gradient. The output fluid flux was measured, and
permeability for each sample was computed using Eq. (7.9).

Hadwiger’s characterization theorem states that only four invariant measures are needed to
describe a 3-dimensional system formed by a union of convex solids: (i) area, (ii) volume, (iii)
the Euler characteristic, and (iv) integral mean curvature. Based on this, we hypothesized that
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Fig. 7.3 (a) Porous structure of a log-normal stochastic sample, (b) the system-spanning path
through which a sphere of diameter lc can move freely, (c) pressure distribution inside the
porous space, and (d) steady-state velocity profile across the sample. The color legends provide
value scales in CGS units.

permeability could be expressed as a function of the Minkowski functionals: (i) the square of
the characteristic length lc, (ii) the integral mean curvature H, (iii) the topological measure of
the Euler characteristic χ , and (iv) the effective porosity φ0, which is defined as the volume of
the porous channel scaled by the system volume (a constant across all cases considered). To
test this, we analyzed the variation of permeability with each of these geometric measures.

The permeability showed a power-law dependence on l2
c . It’s worth noting that the effective

cross-sectional area of the transport channel, Ac, is related to l2
c by the expression Ac =

π

4 l2
c .

Therefore, the variation of k with Ac follows a scaling relationship, as shown in Fig. 7.4(a):

k =C1Ac
m1 (7.11)

with m1 ≈ 1.066. This indicates that permeability increases with Ac, meaning that larger pore
throats enhance permeability, as expected.
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Fig. 7.4 (a) The log-log variation of permeability with Ac for the deterministic and stochastic
3-dimensional porous structures, (b) variation of permeability with porosity φ0, (c) the log-log
variation of permeability with the Euler Characteristic χ , (d) the variation of permeability with
the mean integral curvature.

When examining the relationship between permeability and effective porosity for the system,
as shown in Fig. 7.4(b), the data points formed a cloud. Despite this, the clouds for different
systems exhibited a power-law scaling of permeability, with an exponent m2 ≈ 1.180.

k =C2

(
φ 3

0
(1−φ0)2

)m2

(7.12)

When the behavior of permeability was checked for variation in the topological connectivity
measure the Euler Characteristic χ , permeability decreased with |χ| following a scaling
behavior of the form, Fig. 7.4(c):

k =C3|χ|−m3 (7.13)

The exponent m3 ≈ 0.648.
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Fig. 7.5 (a) Variation of permeability k with F , a build-up function of the geometric invariants
of the samples. (b)Variation of permeability k with F using regression shows a very good
collapse on a single power-law scaling function irrespective of sample type.

Variation of permeability with the integral mean curvature H followed a scaling law of the
form

k =C4H−m4 (7.14)

The exponent m4 was almost identical for both the deterministic and the stochastic systems,
being m4 ≈ 1.17, Fig. 7.4(d). Thus, smaller curvatures, i.e., larger spherical grains, left bigger
voids in the system that were conducive to fluid flow.

The common features of our investigations so far have been:

• Permeability showed a power law dependence with each of the different geometric
measures of the porous system, having the form:

k =Cxm (7.15)

with C a constant, x being any one of the geometric measures of the 3-dimensional
system, and m being the corresponding exponent.

• In all the relations investigated, Eqs. (7.11) to (7.13), the exponents had, on average,
identical values for all the systems.

• The variation of permeability with x in every case showed an upper bound for the cubic
symmetry and a lower bound for the hexagonal packing. The values of k against x for the
stochastic systems lay between these bounds, Fig. 7.4.

Our next step was to try and determine a single relationship between flow and the geometri-
cal characteristics of the systems studied. Borrowing from the Kozeny-Carman equation [189]
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and permeability studies in [190], and keeping in mind the Minkowski functionals, we proposed
a relation between permeability and the geometrical parameters based on the behaviors obtained
thus far:

k = Ac
φ 3

0
(1−φ0)2

1

|χ|0.5
1
H

(7.16)

where Ac is the critical cross-section that cuts off particles with cross-sections greater than Ac

from percolating through the system; φ0 is the effective porosity, i.e., the porosity associated
with the system spanning channels. The R.H.S. of Eq. (7.16) can be clubbed together as
a combinatoric F = Ac

φ 3
0

(1−φ0)2
1

|χ|0.5
1
H . Following Eq. (7.16), we plotted the variation of the

permeability k with F on a log-log scale as shown in Fig. 7.5(a). Though there was a good
suggestion of the collapse of all points for all four scenarios studied onto a single straight line,
there remained a non-negligible scatter. However, for all the ordered and disordered systems
studied, permeability followed a scaling relationship of the form

k =CF0.428 (7.17)

This indicated that irrespective of the disorder in pore space for 3-dimensional systems
built of spherical grains, permeability followed a scaling behavior with a combinatoric of
the Minkowski functionals - Ac, φ0, χ and H, with a unique scaling exponent 0.428. The
other notable part of our investigation is that the cubic and the hexagonal systems appear to
provide the upper and lower bounds within which all values of k reside for their corresponding
combinatoric F . While a more rigorous proof is required for the bounds to be established,
one can argue that given a fixed box size (here L3 ), hexagonal close packing will certainly
minimize the pore volume and, therefore, permeability. On the other hand, cubic packing
with uniform-sized spheres shall provide the maximum void space and increase k. Any other
distribution of particle size is expected to show permeability values between these limits.

To obtain an almost perfect collapse of all data points onto a single straight line, we followed
a regression of Eq. (7.16) of the form

k = α(Ac)
a
(

φ 3
0

(1−φ0)2

)b

(|χ|)cHd (7.18)

with α = 0.0081, a =−0.328; b = 1.061; c = 0.075, d =−1.602. If we represent the RHS of
Eq. (7.18) by F ′, Fig. 7.5(b) shows the variation of k with F ′. It shows the power-law scaling
of the form

k =C′(F ′)0.998 (7.19)
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We propose that the permeability of a 3-dimensional porous structure, irrespective of its pore
size and distribution, follows a power-law scaling with the sample geometrical measures. Since
we dealt with both ordered and disordered porous systems with various sizes and distributions
of particles, the exponent 0.428 may be universal, at least for systems constructed with spherical
grains.

7.6 Conclusions

Fluid flow through porous systems is a critical phenomenon that influences various aspects of
everyday life. It is almost intuitive to expect that fluid transport properties like permeability
and conductivity depend on the geometry of the pore space. Hadwiger’s theorem, which states
that any 3-dimensional system formed by a union of convex solids can be described by a linear
combination of at most four geometric invariants (the Minkowski functionals), motivated us to
investigate the correlation between permeability and these functionals.

We began by generating two types of disordered porous systems, both composed of spherical
particles: one with a log-normal particle size distribution and the other with a normal distribution
centered around specific mean sizes. At least six different mean sizes were used for this
construction. To study the effect of disorder, we also created two perfectly ordered systems
with different symmetries of grain arrangement: cubic and hexagonal. In order to emulate
natural conditions, we allowed the particles to settle under gravity using discrete element
modeling (DEM), achieving an equilibrium state. The flow of incompressible fluid through
the pore clusters was simulated under a fixed pressure gradient, and steady-state velocity and
pressure fields were calculated. Permeability was determined using Darcy’s law.

For each generated structure, we computed four geometric characteristics: (i) critical
cross-sectional area, (ii) effective porosity, (iii) integral mean curvature, and (iv) the Euler
characteristic. Permeability showed power-law scaling with each of these four geometric
measures. Although effective porosity (φ0) did not strictly follow a power-law, we observed that
the data points for all systems showed a scaling behavior with permeability. Interestingly, the
exponent of the power-law scaling was nearly identical across both disordered and deterministic
systems.

Inspired by Hadwiger’s theorem, we formulated a combinatorial function F of these four
geometric characteristics. The key finding of our research is that permeability exhibits a single
scaling relationship with this combinatorial F across all systems, whether their pore geometries
were ordered or disordered. The scaling exponent of 0.428 is universal for 3-dimensional
porous systems made of spherical grains. To the best of our knowledge, this is the first time
a unified relationship linking fluid flow to all four Minkowski functionals has been proposed,
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with a consistent exponent for disordered 3D porous systems. We achieved a collapse of data
points from all the systems studied through regression of the combinatorial function F .

Another noteworthy result is that the cubic and hexagonal systems set the upper and lower
bounds for the scaling relations between permeability (k) and each geometric characteristic.
The data for the stochastic systems fell between these bounds.

Our original goal of relating permeability to system characteristics through the four
Minkowski functionals with a single exponent, regardless of particle size or distribution,
suggests that the exponent is indeed universal. Future work will explore whether this exponent
of 0.428 is independent of particle shape. We also intend to extend this study to other transport
properties, such as electrical conductivity, and look forward to reporting on those findings soon.





Chapter 8

Summary and Future Directions

In this dissertation, I conducted a thorough investigation into the formation, evolution, and
energetics of crack mosaics in various systems. I developed classification schemes based on
topology and geometry and applied them to columnar joints, cyclic wetting-drying systems,
and salt playas. Additionally, I examined how fractures form in porous granular systems under
compressive loading using Distinct Element Methods and theoretical analysis to understand
how the geometry and topology of these systems affect their flow properties. The key findings
and contributions of this work are outlined as follows:

• Geometrical and Topological Analysis of Crack Mosaics:
The study introduces a robust framework for understanding crack mosaics through a
four-parameter set (n,v,D,λ ). This compact signature captures both the topological
and geometrical properties of crack mosaics, providing a clearer distinction between
different crack systems than traditional topological combinatorial values (n,v) alone.
This quantitative approach differentiates crack systems based on the mechanisms driving
crack formation and the material properties. The identification of two topological regions,
the ‘Platonic attractor’ and the ‘Voronoi attractor,’ deepens our understanding of how
crack mosaics transition between different equilibrium states. This framework forms a
foundation for future research into the evolution of crack patterns across a wide range of
materials and systems.

• Energy Minimization in Crack Mosaics and Pattern Formation:
Building on this, I investigated the development of crack patterns in dynamic systems,
including columnar joints and the cyclic wetting-drying of mud. Our simulations revealed
that the hexagon-like tiling found in columnar joints is a result of the system’s natural
drive to minimize total energy. Likewise, mud cracks evolve into Centroidal Voronoi tes-
sellations through repeated wetting and drying cycles governed by energy minimization.
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The system energy follows a power-law dependence on the isoperimetric ratio λ , with an
exponent β ranging from 0.2 to 0.5. These results emphasize that the transformation of
crack patterns from disordered T-junctions to Y-junctions follows predictable pathways
dictated by the underlying physics of energy dissipation. By introducing a ‘Voronoi-ness’
measure based on the Hausdorff metric, I was able to quantitatively monitor this geo-
metric evolution, showing that systems with lower elastic modulus and longer intervals
between drying cycles tend to reach a mature Voronoi mosaic more efficiently.

• Hexagon-like Ridge Patterns in Salt Playas:
Next, I investigated the formation of hexagon-like patterns in salt playas. I used the con-
cept that repeated wetting and drying causes the cracks to evolve toward a hexagon-like
pattern as playas go under annual wetting–drying cycles. By modeling fluid transport
and salinity profiles, the study establishes a relationship between salinity-driven crys-
tallization and the emergence of Voronoi-like geometries. I also studied how ambient
conditions, such as evaporation rate, salinity, and diffusion, influence crystal growth.

• Crack Formation in Porous Granular Systems:
I studied crack formation in porous granular systems under compressive strain, focusing
on the role of material properties, particularly the elastic modulus of the cement bonding
spherical grains, using DEM. Two scenarios were analyzed: varying bond stiffness while
keeping bond strength constant and varying bond strength while maintaining constant
stiffness. Both scenarios demonstrated a critical strain, εknee, at which the rate of micro-
crack formation increased, with a power-law scaling relationship between εknee and the
strain at which percolation occurred, εperc. This scaling was robust across different bond
material properties, offering a predictive framework for determining the strain threshold
before system-wide failure. These findings provide valuable insights into the progression
of micro-cracks, potentially aiding in the early detection of damage in granular materials.

• Permeability and Geometric Invariants in Porous Systems:
The final focus of this dissertation was on fluid flow in porous systems, where I inves-
tigated the relationship between permeability and the geometric structure of the pore
space. Motivated by Hadwiger’s theorem, I computed four Minkowski functionals –
critical cross-sectional area, effective porosity, integral mean curvature, and the Euler
characteristic – and found that permeability scales with these geometric invariants in both
disordered and ordered systems. By introducing a combinatorial function F of these four
characteristics, we discovered a universal scaling relationship between permeability and
F , with a consistent exponent of 0.428 across all systems, regardless of their geometric
order. This unified relationship underscores the geometric principles that govern fluid
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transport in 3D porous systems, offering a predictive model for permeability based on
geometric invariants.

In conclusion, this work advances the field by offering a unified approach to understanding
the interplay between geometry, material properties, and physical processes in porous systems,
providing a foundation for future studies in the physics of fracture, energy minimization, and
fluid dynamics.

8.1 Future Directions

There are several potential avenues to extend and deepen the research presented in this disserta-
tion:

1. Machine Learning and Pattern Recognition: The incorporation of machine learning
techniques offers a promising future direction, particularly for the classification and
prediction of fracture patterns based on physical and environmental inputs. Pattern
recognition algorithms could be used to automatically identify specific fracture behaviors
or transitions between pattern types (e.g., from Gilbert to Voronoi tessellation) in both
simulated and experimental datasets.

2. Extension of DEM to Other Granular Materials: The current DEM model focused on
spherical grains bonded by cement. Future work could explore systems with grains of ir-
regular shapes or different size distributions (e.g., bimodal or fractal distributions), which
could more accurately represent real-world materials like soils, rocks, and construction
materials. Additionally, studying the effect of different particle geometries, such as
ellipsoidal or polyhedral particles, could provide deeper insights into crack propagation
mechanisms.

3. Effect of Dynamic Loading: While this study applied compressive stress in a quasi-static
manner, future investigations could explore the effect of dynamic loading conditions,
such as cyclic or impact loading. This would be particularly relevant for applications like
earthquake engineering, where materials are subjected to rapidly changing stresses and
could help better understand material failure under fatigue.

4. Crack Healing Mechanisms: It would be valuable to study crack healing mechanisms
where micro-cracks may close under certain conditions, such as changes in temperature
or chemical reactions at the particle bonds. This could inform the development of
self-healing materials or better predict the lifespan of materials in civil engineering
applications.
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5. Multiscale Modeling: A multiscale approach, combining macro-scale and micro-scale
models, would offer a more comprehensive understanding of how microstructural crack
formation and bond strength influence the overall mechanical behavior of the system.
Coupling the Distinct Element Method (DEM) with continuum mechanics methods like
Finite Element Modeling (FEM) could be a promising avenue to achieve this.

6. Extension to Different Particle Shapes: While the fluid flow study focused on spherical
grains, it remains to be seen whether the universal exponent of 0.428 holds for porous
systems composed of non-spherical particles. Investigating different particle shapes, such
as ellipsoids, cubes, or irregular geometries, would provide a broader understanding of
the universality of the relationship between permeability and Minkowski functionals. One
further improvement can be considering the particles intersecting at more than a point
and using accurate expressions for the Minkowski functionals under these situations.

7. Improving Computational Efficiency: Enhancing the numerical methods used, such
as optimizing the finite difference approach or implementing alternative computational
techniques like finite element or lattice Boltzmann methods, could allow for more efficient
simulations of larger or more complex systems.

8. Study of Other Transport Properties: Beyond fluid permeability, other transport prop-
erties like electrical conductivity, thermal conductivity, and diffusivity can be examined
using similar methods. Exploring how these properties scale with the same set of geomet-
ric invariants could reveal unified scaling laws for different types of transport phenomena
in porous media.

9. Experimental Validation: While our findings are based on simulations, experimental
validation is crucial for assessing the practical applicability of the proposed scaling
relations. Developing physical models or performing laboratory-based measurements on
3D-printed or naturally occurring porous systems would be valuable in confirming the
robustness of the scaling exponent and the combinatorial function F .
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Appendix A

Spring model and elasticity

When a solid deforms, the atoms at various positions shift and oscillate around their equilibrium
positions to minimize the potential energy. The total energy of the system can be expressed as
a function of all atom positions, expanded around the equilibrium position of each displaced
atom, as follows:

φ(uni) = φ(u0)+
1
2 ∑

mi

∂ 2φ

∂umi∂un j
umiun j + · · · (A.1)

In the expansion of the energy function around the equilibrium position, the linear term in
umi vanishes because the expansion is centered at the minimum energy state. Here, u0 represents
the equilibrium energy, and (m,n, · · ·) denote the atomic positions, with i representing any
of the three spatial directions. For long-wavelength vibrations, the displacements between
neighboring atoms are approximately equal, allowing us to describe the deformation of the solid
using continuum theory. In this model, each atom is connected to its neighbors via Hookean
springs with a spring constant k. Although this model is not entirely accurate for representing
shear deformations, it is adequate for analyzing longitudinal strain situations.

For a linear chain of atoms, the equation of motion becomes

Mün = k(un+1 −un)− k(un −un−1) (A.2)

For small displacements u of atoms at position n relative to their nearest neighbors at positions
(n+1) and (n−1), with a constant separation distance a, the differences can be approximated
by the differential quotients as follows:

(un+1 −un)− (un −un−1) = a2 ∂ 2u
∂x2 (A.3)
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where i = x.
The derivative

ε11 =
∂u1

∂x1
(A.4)

is the strain which is a continuum quantity. If the atomic masses are replaced by their mass
density ρ = M/a3, the continuum equation of motion for longitudinal vibration becomes from
Eqs. A.7 and A.3,

ρ ü = c11
∂ 2u
∂x2 (A.5)

with c11 =
k
a . c11 is an elastic modulus that describes a force per unit area in the x-direction in

response to a deformation along the same axis. The elastic energy becomes

E =
1
2

c11ε
2
11 (A.6)

The derivative

ε11 =
∂u1

∂x1
(A.7)

represents the strain, which is a continuum quantity. When replacing the atomic masses
with their mass density ρ = M

a3 , the continuum equation of motion for longitudinal vibration,
derived from Eqs. A.7 and A.3, becomes

ρ ü = c11
∂ 2u
∂x2 (A.8)

where c11 =
k
a . Here, c11 is an elastic modulus that quantifies the force per unit area in the

x-direction in response to deformation along the same axis. The elastic energy is given by

E =
1
2

c11ε
2
11 (A.9)
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