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Abstract

This dissertation investigates various dynamical systems through the frame-
works of combinatorial and algebraic topology and geometry, with the goal of under-
standing how physical dynamical processes imprint themselves on the topology of the
system. By developing a structured approach for analyzing topological information,
this research applies these methods to both simulated and empirical dynamical data.
The study encompasses a wide range of physical processes, beginning with an explo-
ration of crack mosaics formed by drying solutions/suspensions of different materials.
These are characterized by relatively simple patterns, and the study progressively
extends to more intricate problems, such as flow patterns in fluid dynamical systems.

A key contribution of this work is the construction of topological and geo-
metric tools that capture the essential features of dynamical systems, enabling their
classification based on topological and geometric similarities and differences. For
crack mosaics, a four-parameter tuple space, denoted as (n, v,D, λ), was introduced.
This combinatorial and geometric framework successfully investigates and distin-
guishes crack pattern characteristics according to material properties of the drying
system. In the analysis of spatio-temporal evolution in fluid dynamics, which is more
involved, a novel topological tool, termed the Euler Characteristic Surface (ECS),
was developed. The ECS encapsulates the topological signature of a dynamical sys-
tem and provides a unique descriptor for it.

To quantify the similarity and dissimilarity between ECS representations, a
new metric referred to as the Euler Metric was introduced, facilitating the comparison
of dynamical systems through their topological characteristics. The effectiveness of
these topological constructs has been thoroughly analyzed, with results that validate
their ability to capture and distinguish dynamical behavior.

The dissertation concludes by establishing the mathematical stability of the
proposed topological constructs and by drawing connections to widely-used tech-
niques in Topological Data Analysis (TDA).
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Chapter 1

Introduction:

The story of my thesis started in a serendipitous way. Initially when I had joined
the lab to pursue my research, there were scholars from the lab who had published
work on studying morphological phase transition in real and simulated dynamical
systems. One of them being the Island to Mainland transition in square lattice with-
out and with modified diagonal connectivity [6, 7], the other being the development
of crystalline phase in drying droplet[8]. Interestingly, in both of the works, there
were analysis based on a parameter called “Euler Charactristic”, whose minima and
maxima were observed along with significant morphological transition in the sys-
tem.“Euler Characteristic” is a very popular topological invariant( the details about
it are discussed later in this chapter and as well as in Chapter 3).

Reading these works made me interested in exploring the parameter in other
systems. My initial endeavour was to compute this “Euler Characteristic” in a simu-
lated system of triangular lattice with the percolation theory approach. The output
of the simulation matched with the results reported in [9, 10], the curve of the Euler
characteristic reaches zero at percolation threshold pc = 0.5 and changes its slope.
Generally, the question that followed after this, whether this parameter is that pow-
erful to capture transitions and dynamical changes in real systems as well. To follow
the quest, I gradually developed algorithms and methods that studies the variation
of Euler Characteristic in dynamical systems that also helps in understanding the
physical processes going on in the dynamical systems. The study then got widened
with inclusion of the approaches from combinatorial topology and algebraic topol-
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ogy, influenced by the collaboration with my co-supervisor. We delved into analysing
different real and simulated dynamical systems such as crack networks, fluid mixing
and droplet evaporation, with the topological perspective and carried on improving
the robustness of our tools and methods. The intention behind this dissertation
were − 1) Building frameworks that analyses the topology of dynamical systems,
2) Whether studying dynamical systems in terms of topological approaches is at all
beneficial/insightful, 3) Testing the robustness of the established framework with the
already established topological tools and methods. The studies done for this disser-
ation are presented chapterwise, before that a very brief description of the different
standard methods to study dynamical systems follows in the subsequent sections
here.

Dynamical systems have been a domain of critical importance for more than
centuries. It simply describes the time evolution of system by differential equations
where time is a continuous parameter or by iterated maps where time is discrete.
The very first foundation of it started with the introduction of Newtonian classical
mechanics to describe planetory motion in late 16 th century. Later in 18th century
Poincare proposed to look at dynamical systems with geometrical approach. The
field gradually got improved with study of complex behaviour with Hamiltonian
mechanics by Birkhoff, Kolmogorov, Arnol’d in early 19 th century. The invention
of the computer in mid 19th century and therefore running numerical simulation
helped advancement to understand dynamical system more vividly. From 1960 to
1980 the emergence of strange attractor and Chaos by Lorenz opened a new side
of the studies. Later the introduction of fractal by Mandelbort and the study of
non-linear biological oscillator by winfree added new perspectives to the field[11, 12]

1.1 Characteristics of frameworks suitable to study

complex dynamical systems:

For real world dynamical systems having a large number of components, the problem
becomes complex when the conceptual and analytical framework of the simple dy-
namical system theory approach often does not yield an effective understanding. A
complex dynamical system is one made with many constituents which may interact
with one another. Thus studying the constituents in isolation makes no sense. The
attributes associated with complex systems are their unpredictable outcomes and
the lack of precision in linking them to their causes[13]. E.O. Wilson had mentioned
that the challenge in studying a complex dynamical system is to specify an accurate
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and complete description through a suitable framework[14].

Complex dynamical systems have been studied from a network approach by
different scientists during the last three decades.The focus of studying a dynamical
system as a network is to analyze the structure or anatomy of the network and de-
scribe how it relates to the functions or behavior of the system. The standard network
models used are the following : regular networks (grid, lattice, chain etc.), random
graphs, small world networks, the scale free networks etc. Analysis of a network
involves study of the following features - structural complexity, network evolution,
connection diversity, dynamical complexity, node diversity, meta complications and
other such details. Further details are explained in [15]. Real world complex net-
works, e.g. the World Wide web, Ecological networks, Cellular networks, Power
and neural networks etc have been studied to understand their network topology.
Average path length, clustering coefficient and degree distribution are some of the
parameters that are studied to quantify the network structures[16]. It is to be noted
that a complex network may not always be a complex dynamical system.

A statistical physics inspired approach for characterization of complex system
dynamics has also been applied by scientists. In a complex system the interactions
between the constituents are space and time dependent. The state of the constituents
and their interaction co-evolve over time, causing the microstate and macrostate to
dynamically update each other. Behavior of complex dynamical systems are often
explained using tools of statistical physics such as - universality, scaling, phase tran-
sition, diffusion and so on. Concepts and techniques such as Entropy, Random walk
and other such tools are often employed[17].Estimation of the free energy to describe
different spatio-temporal states in a complex dynamical system made of N agents
acting collectively was studied by Koorehdavoudi et al., [13].

Complex system science, that focuses on how the components within a system
are related to one another, provides a structure to study multiscale behavior of a real
system which is often complicated. Its basic principles include multiscale analysis,
trade off between small scale and large scale complexity, matching the complexity
of a system to that of its environment etc. A system is characterized as random,
coherent, or correlated according to the interaction between its components. This
is similar in approach to statistical mechanics where the macroscopic properties of
a system is studied by analyzing all its possible states. Complex system science -
studies the space of all possible modes of behavior of a complex system by identifying
the complexity profiles. The larger the number of possible ways of behavior for a
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system, the greater is its complexity. Complexity of a system is very much a scale
dependent phenomenon and it requires multiscale analysis. Clickable maps is one
such tool that aids in analyzing multiscale complexity of a system. Although it often
may be inadequate to understand critical macroscopic phenomena such as phase
transitions in a system[18].

1.2 Topology and Dynamical Systems:

The aim of this work is to look at dynamical systems from topological perspectives,
using tools and parameters of topology. Topology, is a branch of mathematics that
studies the properties of a geometric object (represented by graphs, simplicial com-
plexes, or other discrete structures) that remains unchanged under continuous trans-
formation. The usual examples of continuous transformation of space are stretching,
twisting, bending,crumping etc and the topology of an object remains unchanged
under these processes. Tearing, gluing, self crossing do not preserve topology. Fig-
ure(1.1 illustrates how objects with varying sizes, curvatures, and shapes can undergo
continuous deformations while maintaining their global topological properties. De-
spite the transformations, key features such as connectivity, holes, and boundaries
remain unchanged, showcasing the robustness of topology in preserving fundamental
structures during deformation. In a complex dynamical system the above mentioned
physical processes get combined repeatatively leading to a structure. Thus the sig-
nature of the mechanics of the dynamical system is hidden in its topology. Studying
topology of the geometric structures present in the dynamical system may give in-
formation about the physical forces acting in the system. Poincare in 1892 had
instignited the question that whether it is possible to identify dynamical systems
and its evolution in terms of topology.

1.2.1 Studying topological invariants:

With the advances in computation the theory of algebraic topology has branched
into ‘Applied Topology’ where one uses the concept of topology to analyse physical
or biological or societal dynamical systems. The application was vastly on under-
standing patterns or morphology of complex dynamical systems. One of the most
populat topological invariant is the Euler Characteristic. It is one of the measures in
Minkowski functionals as well. Euler Characteristic is a very efficient marker to study
connectivity of a network or system. It has been used to study the structure in porous
systems [19] and has been related to permeability of the porous matrix[20]. The large
datset produced by Astronomical observations have been interpreted [21] as well as
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Figure 1.1: The objects in the figure have topologically equivalent shapes, that can
be transformed from one to other through continous deformations[1].

the non-trivial connectivity in the complex functional brain network, protein or gene
networks have been studied with the help of this topological invarint[22, 23].The
field of Image processing has been vastly benefited with using topological tools in
last fifty years. Pattern Recognization, Optimal thresholding, Skeletonizing etc have
been improved with algorithms inspired from topology[24].

Chaos and topology:

There exist other topological measures that have been used to understand dynamics
in complex disordered systems. In a review Gilmore describes how topological meth-
ods can help analysis of dissipative dynamical system operating in chaotic regime.
The study highlights how studying topological invariant is beneficial over metric
invariant and dynamical invariant. The topological invariants studied were linking
number and relative rotation rates related to unstable periodic orbits occuring in
strange attractors. The topological invariants are robust under change in parameter
for chaotic data whereas the other two variants are not. [25]. The non-autonomous
and stochastic dyanamical behavior in climate is also being looked at with insights
of algebraic topology[26] by studying the branched manifolds of the dynamical sys-
tems through cell comlplex and homology. Branched manifolds are topologically
invariant and two dynamical systems with same branched manifolds are considered
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as dynamically equivalent.

1.2.2 Topological data analysis:

With recent advenced computation technology, there has been a data avalanche
for different kind of dynamical systems. Intepretation of such time series data of
dynamical systems to inpret the dynamics is the new challenge scientists are running
for. One of the most efficient approach to deal with this has been the development
of the subject “Topological Data Analysis” or TDA. The problem with working
with large data is to identify the noise and the missing information. Often times
these datasets have high dimensional relation that is not possible to visualise with
open eyes. Topological data analysis extends the concept of homology to extract
features from such complex data sets. A data set is basically considered as a vertex
set or point cloud, where the whole set is constructed with geometric structures
of different dimensions called simplices. The tools of homology is then applied on
these simplicial complexes to extract different dimensional features like connected
components, loops, cavity etc. One of the most popular branch of TDA is Persistent
Homology, first conceptualised by G. Carlsson in 2004[27, 28].There have been many
succesful applicatiion of TDA on different dynamical systems. A concise review can
be found in [29].

1.3 Outline

In this dissertation I shall first explore static patterns, specifically crack patterns, left
by dynamical processes. The patterns shall be classified in terms of combinatorial
topology and geometry. This format of pattern classification will help classify sys-
tems/materials that share some common intrinsic properties as their combinatorial
information will be clustered together. A 4-dimensional domain of topological and
geometrical descriptors of the tuples will act as a calibration map for materials. This
study has further lead me to explore the possibility of whether there existed dynam-
ical systems whose birth patterns and mature dynamical patterns were located at
distinctly different positions in the aforementioned 4-dimensional domain. This led
me to the study of the time evolution of columnar joints - gigantic 3-dimensional
crack systems that evolve from cooled lava. It is demonstrated that the geometric
and topological evolution of these cracks is a journey towards minimization of system
energy.

The second part of my dissertation is concerned with changing patterns ob-
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served in the dynamical state of systems. The ‘tracers’ that help track the changing
patterns with time are particles of length scales much smaller than the length scales
of flow lines in these systems. This ensures that the particles do not significantly
affect the flow dynamics itself. In my dissertation I demonstrate that flow pat-
terns can be mapped as functions of time and resolution scales of observation on
2-dimensional topological surfaces proposed in this work. Streamlines and vortices
leave their signatures on these surfaces leading to the quest of why and how these
changes occur.

Once dynamical systems are captured on their ‘characteristic surfaces’, one
can distinguish between dynamical systems via a metric measure proposed in this
dissertation. Questions of stability of flow systems to small perturbations have also
been addressed using the topological maps and measures introduced in this disser-
tation.

Finally I have discussed the merits and demerits of the topological analysis
developed in this dissertation in comparison to other existing techniques often used
to characterize disordered dynamical systems.

In the following chapters I shall first discuss the static patterns left behind
by disordered dynamical systems that have reached maturation and their character-
ization in terms of combinatorics of topology and geometry. This will be followed by
characterizing flow patterns in disordered dynamical systems using topological de-
scriptors. Lastly we shall build the mathematical stability of our topological methods
and conclude its merits and demerits.
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Chapter 2

Studying combinatorial topology
of crack networks: A 4-parameter
space

In nature, various patterns exist generated by physical dynamic processes. Natural
crack networks are one such genre where we observe intriguing patterns/ tessellations.
For more than decades scientists have been involved in exploring the mechanics of
crack formation and its network progression [30, 31, 32, 33, 34, 35, 36, 37]. Studies
also include fluid transport through crack networks [38, 39, 40, 41], scaling laws in
fracture interfaces [42, 43, 44, 45], and mechanisms of failure [46, 47, 48, 49]. In
every case crack morphology plays a non-trivial role and therefore different measures
have been used to characterize patterns in crack networks, integral geometry based
Minkowski function [50, 51, 52, 53, 54, 55], fractal dimension analysis [56, 57, 58,
59, 60, 61], summary statistics such as distance characteristics, spherical contact
distribution functions, and the J-function, as well as second-order characteristics
like the two-point correlation function, Ripley’s K-function [62], and the L-function,
have generally been utilized [63, 64, 65, 66, 67, 68]. Mecke et. al introduced a
morphological description of a triplet function that included normalized values of
integral-geometric quantities such as area, boundary length, and Euler number of
patterns of discs centered on the points of a stationary point distribution [69]. This
approach is similar to that of Adler [70] and Worsley [71, 72, 73]. Andresen et al.
[74] analyzed the topology of 3-dimensional fractured systems as an abstract map of
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nodes and links using network theory tools. Hope et al. [75] studied the topology of
3-D fracture models including a Poissonian discrete fracture model and a mechanical
discrete fracture model.

In this work, we look at the crack networks from geometrical and topological
aspects and try to find whether the geometry of these crack patterns carries the
signature of the physical desiccation process. Here, we are not concerned with a
single crack but rather with networks of cracks. These networks may often form
distinctive patterns, such as those seen in mud cracks beside a dried riverbed or in a
shattered glass pane. A 2-d crack network consists of solid polygonal shapes which
are called “peds”, separated by narrow gaps which are the “cracks”. The images of
the final pattern of such real crack networks which we consider as a tessellation of
the Euclidean plane have been analyzed focusing on two aspects: (i) the geometry,
which includes the shapes and relative sizes of the peds and how they depend on
various factors that create the crack pattern, and (ii) the topology, which concerns
the connectivity of the pattern - how the adjacent peds connect with each other and
how the crack network pervades the whole system.

We propose a 4-tuple (n, v,D, λ) to classify planar surface crack networks,
including both convex and non-convex polygons, as detailed later in Section 2.1.
Briefly, the first two elements of the 4-tuple are the average number of nodes and
vertices of the network, forming an (n, v) pair that determines the topological con-
nectivity of the network. This information encodes connectivity similarly to the
coordination number in sphere packings [76]. The angular defect D measures av-
erage geometric regularity by comparing the deviation in polygonal angles to those
of a regular polygon with the same number of sides. Finally, λ, the normalized
isoperimetric ratio, quantifies the polygonal shape.

We expect that crack networks in similar materials, or with similar modes
of cracking [77], or similar underlying mechanisms, will cluster in this 4-dimensional
space. With sufficient data on crack networks, a ‘well-stocked’ 4-parameter phase
space could be constructed. Ideally, this would act as a calibration space for any crack
network, allowing it to be placed as a point in one of the classified clusters. This
type of crack network calibration would provide immediate insights into material
information, crack modes, and the responsible mechanisms for an unidentified crack
pattern. The time evolution of a crack network would trace a trajectory in this
phase space, providing key insights into the underlying principles responsible for
such transitions.
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In the next Section 2.1, after a brief discussion on cracks and mosaics, we
introduce the theory for analyzing the topology and geometry of planar polygonal
mosaics. Section 2.2 describes image processing and analysis of real crack systems,
followed by comparing real crack and simulated crack networks in section 2.4. Section
2.6 highlights the findings of the study and finally, in Section 2.7, the conclusions of
the work have been summarized.

2.1 Background on planar mosaics

As the study is based on the crack patterns on plane only that resemble regular
mosaic-like tessellation, a brief description of the classical combinatorics used to
study planar mosaics is given at first. The idea of considering not only the com-
binatorial topology of a mosaic but also its geometry follows after that where two
geometrical measures are introduced. Finally, the 4-parameter phase space of topol-
ogy and geometry is manifested and is used to study a given set of crack patterns of
different materials.

2.1.1 The topological combinatorics (n,v) and n-v plane :

There exist comprehensive studies on the mosaics of convex polygons on the Eu-
clidean plane [78]. Two-dimensional mosaics are also called planar tessellations or
tilings. In a combinatorial sense, a mosaic is a countable set of compact regions
that tessellate the plane such that the regions intersect pairwise only at their bound-
aries. In the theory, the regions are idealized to be convex polygonal. However, the
real cracks, natural or experimental, this restrictive assumption often does not hold
in some cases. The classical theory is based on the non-trivial assumption of the
polygons being convex only. In standard terminology of combinatorial topology, a
zero-dimensional face of a polygonal region is called a vertex, and a one-dimensional
face is called an edge. The vertices of the polygons are known as the nodes or junction
points of the mosaic. Not every node (junction point) on the boundary of a polygon
is necessarily a vertex of that polygon. If a node is a vertex of n cells/polygons, it
is said to have degree n. A polygon/cell is assigned a degree of v if it has v vertices.
In a mosaic, there can exist two kinds of nodes, (i) Regular nodes, and (ii) Irregular
nodes.

A node is called regular if it is the vertex of all the cells on whose bound-
ary it lies. Figure (2.1a) shows tilings where all nodes are regular. A node is not
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Figure 2.1: Rectangular and Triangular lattices with - (a) all“regular nodes”, (b)
with all “irregular nodes”, (c) with both regular and irregular nodes present, (d)
A, B, and C are polygons in a schematic mosaic, nodes marked by numbers 1 - 9;
tabulation of nodes and vertices of each polygon; tabulation of regular and irregular
nodes of the mosaic.

regular when it is not the vertex for any of the cells on whose boundary it lies. It
is then called an irregular node of the mosaic, as represented in Figure (2.1b) where
all nodes are irregular in the tilings. Figure (2.1c) presents tilings with both regular
and irregular nodes. Figure (2.1d) showcases how nodes and vertices are marked,
and the distinction between regular and irregular nodes. A schematic of a polygonal
mosaic in which 3 polygons A, B, and C are highlighted is shown. The nodes (junc-
tion points) are numbered from 1 to 9. Given a planar convex mosaic, we consider
the number average values of the degrees n and v, n and v respectively, over the
entire mosaic. If the mosaic is infinite, we consider the limits of the averages of these
degrees over planar disks with radius going to infinity. Finally, the regularity index p
of the mosaic is measured by the ratio of regular nodes to the total number of nodes
in the mosaic.

Any convex polygonal normal mosaic must lie in a compact combinatorial
domain in the (n, v) plane.
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It can be easily shown that

p + 1

n
+

2

v
= 1, (2.1)

where v ≥ 3 is the total number of vertices of a polygon. This relation gives a natural
combinatorial classification of mosaics by their p-regularity, referred to as iso-p lines.

For the values of p = 0 and p = 1, the above gives two more natural com-
binatorial curved boundaries for the (n, v) domain. Moreover, for any regular node
n ≥ 3, and for any irregular node n ≥ 2 , Figure(2.1). Thus the average num-
ber of polygons per node ,n, of the mosaic must also satisfy the minimum number
p · 3 + (1 − p) · 2 = p + 2 or,

n ≥ p + 2. (2.2)

Combining Eq.(2.1) with the condition Eq. (2.2), the final boundary of v ≤ 2n is
defined. This defines the 2-dimensional (n, v) plane for all convex polygonal nor-
mal mosaics, schematically shown in Figure (2.2a). Domokos et al. [79] carried out
extensive fieldwork on fractured materials and concluded that there were primar-
ily two regions on the allowed (n, v) map where patterns generated by the natural
fragmentation of rocks and soil tended to cluster.

A group of natural crack mosaics could be classified as having (n, v) ranging
from (2, 4) to (4, 4). This implied rectangular patterns, ranging from irregular to reg-
ular, as shown in the schematic Figure (2.2a). Domokos et al. considered rectangular
or cubic symmetry as the ‘Platonic attractor’. Another group of natural crack mo-
saics had (n, v) values clustered around (3, 6), implying hexagonal symmetry which
is referred to as the ‘Voronoi attractor’.

2.1.2 Introduction of geometrical measures

As the combinatorial measures(n,v) do not differentiate between cracks from different
materials, the question was how materialistic individuality can be reflected in the
patterns. This led to considering to study the geometry of the crack networks. Two
geometrical measures were used - (i) a measure of geometric regularity of a mosaic
in the form of its non-dimensionalized “angular defect”, (ii) a measure of regularity
in the shape of the polygons in the form of non-dimensionalized and normalized
Isoperimetric ratio.
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Figure 2.2: (a) (n,v) phase diagram. The range (2,4) to (4,4) i.e. bricklayer type
to square-tiled type patterns, cluster around ‘Platonic attractor’. Hexagonal tiling
pattern with (3,6), cluster around the ‘Voronoi attractor’. (b) θi for a 4-sided polygon
and a 5-sided polygon. Corresponding regular polygons are shown in dotted lines.

The angular defect D and the (n, v,D) space: The ith angle of a polygon, θi
is a function of the angular departure of the ith vertex of a polygon with respect to
the internal angle of a regular polygon of the same number of sides, Figure (2.2b).
For the N th polygon having vN number of vertices, this takes the form

DN =
1∑vN

i=1|θi −
(vN−2)π

vN
| + 1

, (2.3)

Thus, The measure of the geometric regularity in terms of the defect in the internal
angle of the entire mosaic is given by

D =

∑M
i=1Di

M
. (2.4)

where M is the total number of polygons (cells) in the mosaic. By construction, these
measures DN and D are in [0, 1],i.e normalized. To combine both the combinatorial
and geometric qualities, a three-dimensional (n, v,D) space is constructed wherein
all our convex planar mosaics must lie.
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Normalized Isoperimetric ratio λ and the (n, v, λ) space: The angles
alone do not fully specify the polygon. A polygon having the same angles can be
constructed with a larger or smaller area and perimeter. It is therefore important to
include the diversity in the polygonal shapes. According to the classical isoperimetric
inequality [80] for a planar simple closed curve of length L , having enclosed area
A, L2 ≥ 4πA. The shape of the polygon is thus reflected upon its perimeter and
area and thus the attempt to quantify the regularity in the shape of the polygon
was done with another non-dimensionalized measure, the “normalized isoperimetric

ratio” λ =
4πA

L2
(averaged out over all peds present in a mosaic). A circle has λ = 1.

The isoperimetric ratio for a regular N -gon can also be written as λ =
π
N

tan( π
N

)
. As

the number of vertices/edges N increases, λ converges to 1. Thus, when λ is close
to 1, the shape of polygons is nearly symmetric or round and for polygons having
more elongated shapes it is close to 0. Similar to the case of an angular defect, for
the N th polygon, λN is calculated, and then the values of all λNs are averaged out
over the entire mosaic.

λ =

∑M
i=1 λi

M
(2.5)

where M is the total number of polygons (cells) in the mosaic. The three-dimensional
space (n, v, λ) is constructed along with the (n, v,D) space described earlier.

2.1.3 The parameter space of quadruples (n, v,D, λ)

Thus the idea of combinatorial (n, v) was expanded to a space of the quadruples
(n, v,D, λ), which are points in a subset of R4. The purpose behind this construction
was to characterize crack mosaics successfully by their topology and geometry. For
low dimensional classification and visual representation of the 4-parameter space, the
crack mosaics shall be represented as points in two separate 3-dimensional spaces -
the space of points (n, v,D) and the space of points (n, v, λ).

2.2 Analysis work-flow

With the established parameter tuple (n, v,D, λ), crack mosaics from different physi-
cal systems were analyzed to examine how topological and geometrical characteristics
of the crack systems influence their classification in the (n, v,D) and (n, v, λ) space.
The intention behind the study is to find out if crack mosaics of similar materials, or
having similar dynamics of cracking exist in the same place in the (n, v,D, λ) space,
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as well as to compare the position of the real crack mosaic with that from simu-
lated crack mosaics in the (n, v,D, λ). If the objective to distinguish crack mosaics
in terms of the combined 4-parameter tuple (n, v,D, λ) gets accomplished, it may
aid to identify the material of given crack mosaic from calibration in 3-dimensional
(n, v,D) and (n, v, λ) spaces, provided we build a set of enough samples of crack
mosaics of different materials with their (n, v,Dλ) values. The analogy between real
and simulated cracks may help to understand the crack mechanisms following the
geometric algorithms that guide the crack simulation.

2.2.1 Extracting crack skeleton from images

The set of images that were studied were either experimental crack patterns from our
lab [81]and from the articles [82, 83, 84, 2, 85] or natural crack mosaics collected from
[86, 87]. The challenging part of the study was the computational process of extract-
ing information from images to estimate the n, v,D, λ values. The computational
approach is discussed below.

The image analysis starts with proper gray-scale thresholding of the images.
It was done through in-house coding in conjunction with suitable Python library
functions. For most of the images of 2-dimensional planar real crack networks, a
thresholding algorithm was made following Otsu’s binarization [88]. After we set up
a binary bit-map of the images, the crack mosaic was skeletonized using standard
Python libraries [89], Figure (2.3 a-c). The algorithm of crack skeleton extraction is
based on the idea of joining the mid-points of crack widths and therefore, a slight
change in the shape of the system boundary may be introduced during the process.
For a large crack mosaic, one may neglect a boundary layer of polygons to circumvent
this problem. The crack skeleton has a thickness of a single pixel and effectively
constitutes the mosaic for all analysis henceforth. If a black pixel on the skeleton
is shared with more than two white pixels in its δ-neighbourhood, it is identified
as a node or junction point, Figure (2.3d). All the nodes or junction points of the
skeletonized mosaic are thus identified and tagged. The mosaic polygons (painted
white) are identified using the Hoshen-Kopelman algorithm for cluster detection and
labelled.1 [90], Figure (2.3e), the cracks are marked in black.

1This is a variant of the Union-Find class of algorithms commonly used in computer science.
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Figure 2.3: Sequential steps towards determination of (n, v,D, λ) data. (a) A desic-
cated layer of bentonite clay. (b) Binary image after suitable filtration of noise with
a schematic of crack skeleton extraction with respect to mid-points of crack width.
(c) Skeletonized image. (d) All nodes (junction points) detected on the skeleton. (e)
All polygons identified and labelled. (f) Vertices v determined and marked on each
polygon. (g) Nodes n determined and marked. (h) Superposition of Voronoi mosaic
constructed (red edges) from centroids of real crack polygons.

2.2.2 Identification of nodes: calculation of angles at nodes

As explained earlier, all nodes in a polygon may not be its vertices. A polygon
or ped in the crack mosaic may contain regular and irregular nodes. The regular
node is certainly its vertex but the irregular node may or may not be its vertex.
Correctly identifying the vertices of any polygon gives the values of v. For a convex
polygon, the angle made my irregular node which is not its vertex, is always 180
◦. Therefore, angles formed by three consecutive junction points of a polygon are
measured. However, crack mosaics of real systems can contain both convex and
non-convex polygons and the algorithm holds only for convex cases. Hence, it is
important to check the convexity of the polygon being considered for analysis. For
this, using the ‘gift wrapping algorithm’ [88], the convex hull of all nodes of the
polygon is drawn. If even one node of the polygon is not contained on the convex
hull, the polygon is identified as non-convex. In our samples, a few mosaics contained
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non-convex polygons but the numbers were one or two per mosaic. The non-convex
polygons were labelled differently and the angles were calculated differently with
active supervision from visual estimation. Sequencing nodes in a non-convex polygon
by a general algorithm is an open problem to date, that has not been successfully
solved yet!

Characterizing convex polygons in a crack mosaic

For convex polygons, the first step is tagging every node to each polygon that contains
it in its boundary. The centroid of every polygon is determined. The polygon is then
traversed along its edges following a fixed direction, either clockwise or anticlockwise.
In this process, the angle that the polygon centroid makes at every junction point
is calculated. Our algorithm identifies a node (junction point) not as a vertex of a
particular polygon if the angle θ between two consecutive edges of the polygon is
180◦ ± ϵ, where ϵ = 15◦. This process establishes the vertex-edge connectivity of
every polygon. If a node (junction point) is not a vertex of the polygon, it is tagged
as an irregular node of the mosaic.

Characterizing non-convex polygons in a crack mosaic

The problem of characterizing non-convex polygons in a mosaic is well-known to be
messy and an open challenge for a general solution. If the degree of non-convexity
is small, most often the problem of non-convex polygons is bypassed by replacing
them with the approximately closest convex polygons. In many cases, this problem is
avoided by simply neglecting the contribution of non-convex polygons to the statis-
tics, especially if the ratio of the number of non-convex to convex polygons is very
small. However, the experimental crack meshes studied for the work are finite-sized.
Therefore any approximation or neglect of non-convexity can be expensive and lead
to poor statistics. Hence the contribution of non-convex polygons in determining the
(n, v,D, λ) point of a crack mosaic was included.

The process that was adopted for identifying non-convex polygons in the
mosaic and analyzing them to find (n, v,D, λ) data is described here. The vertex-
edge connectivity is based on the idea that if two neighboring polygons share the
same nodes or junction points, then those nodes may be connected via an edge. If
the number of common nodes between two neighboring polygons is two, then those
two nodes are surely connected via an edge but if the number of shared junction
points is more than two, the vertex-edge connectivity of those shared points can not
be estimated clearly if either one of them or both are non-convex. For example in
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Figure (2.4b), polygon 1 is a nonconvex polygon, hence its vertices(edge vectors) can
not be sorted in a particular direction(clockwise/anti-clockwise) using the previously
used convex hull approach. So, to estimate the angle at each junction point of a
non-convex polygon, the process described below was followed. First, its neighbor
polygons and sets of all the points it shares with each of its neighbors are identified
i.e. (A, B, C) with polygon 2 ; (C, D) with polygon 3 ; (D, E) with polygon 4; (E,
F) with polygon 5, (F,G, H) with polygon 6, (H, I) with polygon 7 and (I, A) with
polygon 8. These sets are called ‘common points’ here. Now, to calculate the angle
at a point, another set is constructed that contains all the points that are likely to
be connected with the point considered via an edge, defined by the union of the
“common points” sets containing that point as an element. These sets are called
‘connectivity sets’ for the point. For example, in Figure (2.4b) for point A, this set
is (A,B,C) ∪ (I, A) = (A, B, C, I); for B, it is (A, B, C); for C, it is (A, B, C, D);
for D, it is (C, D, E); for E, it is (E, D, F); for F, it is (F, E, G, H); for G, it is (F,
G, H); for H, it is (H, G, F, I); for I, it is (I, H, A). If a ‘connectivity set’ contains 3
points, then there is no problem in estimating vertex-edge connectivity and hence in
angle calculation which is done from the dot product between the corresponding edge
vectors. For example, the angle at D is calculated from the dot product of edge CD
and DE (sorted counterclockwise). The same applies to angle calculation at points
E, I, B. Whereas, if the connectivity set for a point contains more than 3 elements,
sorting points simply by orientation would not yield the right result all the time. For
example, to calculate the angle at C, sorting A, B, C, and D counterclockwise would
not yield the right vertex-edge connectivity. To tackle these cases, the points of the
‘connectivity set’ are sorted with respect to their distances from the point considered
for angle calculation; (here, distance of C from points A, B, and D), and thus BC and
CD are considered as edge and angle at C is calculated from ∠BCD). In a similar
fashion, angles at F and H are calculated by considering their nearest neighbors in
their corresponding ‘connectivity sets’ and thus, by angle ∠EFG and ∠GHI. again.
Surely, this is not a stable fix for defining edge-connectivity in non-convex polygons
but it worked for the mosaics used for analysis here.

Angle approximation is a non-trivial step in the algorithm because it deter-
mines whether a junction point is also a vertex of a polygon or not. If the angle at
a point is 180 ± 15◦ then it is not considered as a vertex of that polygon. However,
the same point can be the vertex of other neighboring polygons where the angle at
that point is not 180± 15◦. The point then acts as an irregular node of the network.
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Figure 2.4: (a) Convex hull constructed on some polygons of the mesh. Red stars
indicate non-convex polygons determined from the construction. (b) Schematic guide
to the determination of internal angles of non-convex polygons. Image has been
adapted from [2]

2.2.3 Simulated crack mosaics

Simultaneously with me working in the analysis of real crack images, one of my
colleagues also worked on simulating geometric planar tesselations. Broadly, three
different kinds of tiling algorithms were used- (a) Gilbert tessellation, (b) Voronoi
tessellation, (c) Iterative cell division. Different variations in parameters for each
case were studied. Every crack mosaic was examined for determination of the average
n, v,D, λ over 50 configurations. The average mosaic characteristic is then plotted
as a representative point in the (n, v,D) and (n, v, λ) spaces, and analyzed and
compared in terms of their features.
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Gilbert tessellation and its variations:

In the Gilbert tessellation, first, a set of points were chosen with a random distri-
bution. These points were the seeds through which crack lines were drawn with
randomly chosen angles between a range. The lines were extended on both sides,
till they reached the boundary or another line. The variations that were applied
-(1) both uniform and normal random distribution functions for seeds, (2) Different
sets of angles for the slope of the crack lines. The choices of crack slopes were - (a)
random choice between 0 − 180 degrees, (b) slopes parallel to reference axes, i.e. 0
or 90 degrees, (c) slopes chosen randomly from 0, 45 and 90 degrees and (d) slope
determined randomly between 0 ± 10 degrees and 90 ± 10 degrees. Figure (2.5a)
displays the results for a uniform and normal random distribution of crack seeds
respectively for Gilbert tessellation on a 2-dimensional plane.

Figure 2.5: (a) Simulated Gilbert mosaics with random uniform and random normal
seed distribution, (b) Simulated Voronoi mosaics with random uniform and random
normal seed distribution, (c) Simulated mosaics with iterative cell divisions at the
end of 1st, 4th and 8th iterations respectively.

32



Voronoi tessellation

Voronoi tessellation, also known as Voronoi diagram or Voronoi partition, is a method
of dividing a plane into regions based on distance to a specific set of points. Given a
set of seed points, the plane is divided such that each region contains all the points
closer to one seed point than to any other. Each region is called a Voronoi cell. The
algorithm starts with creating a set of random seeds, followed by drawing the lines
that bisect imaginary lines joining pairs of nearest neighboring seeds. These lines
form a set of close-packed convex Voronoi cells making all points in a cell closest
to the seed of that particular cell. This enhances the ‘roundness’ of the cells, i.e.
makes λ closer to 1 than 0. Simulation of Voronoi tessellation was done following
the Python class ‘Voronoi’[91]. Both the uniform and normal random distribution
of seeds were chosen, Figure (2.5b), and the average n, v,D, λ were estimated along
with the statistics. The details are given in [92].

Iterative Cell Division

Another simple simulation algorithm the Iterative Cell Division (ICD) was also
tested. The algorithm starts with outlining a square area. Two points are randomly
chosen on any two sides taken randomly and joined by a straight line, producing 2
daughter cells. The process is repeated on each daughter cell to get 4 cells, and so
on as long as desired. Figure (2.5 c) displays the crack mosaic development after the
1st, 4th, and 8th iterative steps respectively, the newest crack lines are indicated by
broken lines. These type of mosaics in cracks is not very commonly seen.

2.3 Observation from the analysis

After successfully setting up the vertex-edge connectivity in the crack skeleton, the
outcome of the analysis was mapped into the topological-geometrical (n, v,D, λ)
space. The analysis was sectioned broadly into three parts- (a) the n− v plot of the
studied mosaics, (b) portraying the mosaics in n, v,D and n, v, λ space, (c) comparing
the results of real mosaics with that of simulated ones.

2.3.1 Mapping the topology of the crack mosaic on the (n, v)
plane

Once the nodal values for each node and number of vertices of every polygon were
calculated, the average of the nodal values, n, and average number of vertices per
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polygon v were determined for each crack mosaic. Figure (2.3 f and g) displays
respectively, the degrees v for each polygon and the n -value for each node on the
sample crack mosaic of bentonite clay. Figure (2.6) displays the (n, v) points of all
real and simulated crack mosaics studied. Following equation 2.1, the curves for a
specific p value can be drawn in the n − v plane. In Figure (2.6) for p = 0.5 and
p = 0.3 the iso-p lines are drawn which helps to roughly estimate the p value of
the mosaics. Remember, the p value gives the fraction of regular nodes present in
these crack mosaics. As the plot displays that most of the (n, v) values of the real
crack mosaics cluster between p = 0.3 to p = 0.5, confirming that natural crack
mosaics are commonly irregular. At the scales displayed in the figure, the notable
point is that most of the data points cluster around a small region in the n−v plane,
matching with the observation made by [79]. The crack mosaics that were studied,
included different types of materials - natural mud, natural clay as in Bentonite,
synthetic clay as in Laponite, corn starch, resin, glass, and metal oxide films. The
(n, v) analysis results in their similar nature in the combinatorial topology domain.
Therefore, the (n, v) measures alone are not sufficient to distinguish among cracks of
different materials. It is to be noted in the Figure(2.6), that a few points are a little
outside the theoretical domain for the mosaics in the n − v plane, because we did
consider the non-convex polygons as well if presented in the real crack mosaic. Also,
real cracks are inhomogeneous and disordered, and a good measure of n, v requires
preferably a large polygonal mesh to diminish the boundary effect.

2.3.2 Refining by introducing geometric measures - the (n, v,D, λ)
space

As the purpose behind the study was how the difference in chemical and physical
properties of materials manifest in the crack mosaics, the idea to include geometrical
characteristics of the crack network came into play. The result of the analysis on the
extended (n, v,D, λ) space is presented next. The parameter D, defined in Eq.(2.4),
which measures the average angular defect, was estimated following the estimation
of angular defect for each node, Eq.2.3. The method is discussed in 2.2.2. The other
measure, the normalized iso-perimetric ratio of the mosic, λ, was also estimated
following Eqs. (2.5). Combining all measures, a crack mosaic was then represented
as a point in the (n, v,D, λ) space.

Crack mosaics on the(n, v,D) and (n, v, λ)spaces: To pictorially represent
the result of the 4-parameter tuple(n, v,D, λ) for each crack mosaic, 3-dimensional
(n, v,D) and (n, v, λ) graphs were plotted. Figure (2.7) displays the points for the
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Figure 2.6: (n, v) data of real and simulated crack mosaics. The legend indicates the
source of the experimental crack mesh. The iso-p lines at p = 0.3 and p = 0.5 are
drawn as a guide to the eye.

studied crack mosaics, both real and simulated, in the (n, v,D) space. Almost all
the data points are contained inside the allowed space defined analytically. However,
a few points appear a bit outside the allowed (n, v,D) space, Figure (2.7a). The
experimental cracks reported in this paper have not always been measured on large
enough systems, thereby bringing in unwarranted boundary effects. While boundary
effects cannot be avoided in real systems, it is desirable that the ratio of the number
of boundary polygons to inner polygons, be as small as possible, and the number of
polygons in the mesh be as large as possible to give robust statistics. The real crack
mosaics examined here, throw up points that are clustered around n = 2 (a little foe
than n = 2), v between 3.5 and 4, and D values between 0.38 to 0.46. Figure (2.6)
shows that for n = 2, only allowed v is 4, whatever be D and λ. For Simulated crack
mosaics, points corresponding to the Gilbert and the Iterative cell division are also
near n = 2 and v = 4 with the Gilbert mosaics having higher values of D than the
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Cell division ones. For the Voronoi tessellation, the points are positioned near n = 3
and v = 5.9 with D ≈ 0.3. The Voronoi and Iterative cell division yields D values
∼ 0.2 to 0.3 implying a high degree of irregular polygons which is also consistent
with a small value of p. The variants of Gilbert tessellation show a clustering of D
around 0.5.

Similar to the (n, v,D) domain, the points of the respective crack mosaics
on the (n, v, λ) space are displayed in Figure (2.7c). As one can see the points are
not cluttered at the same region, but have different positions. Crack samples from
similar systems have their (n, v, λ) data in clusters, distinguished by their colours.
Figures (2.7b and d) are zoomed-in versions of Figures (2.7a and c) respectively, to
highlight that crack mosaics of different materials are distinctly differentiable by the
different values of their (n, v,D) and (n, v, λ) data in the 4-parameter phase space.
To display the zoomed view of Figures (2.7a and c), data points are spaced out along
the vertical axis that shows the variation in D and λ values prominently in Figure
(2.7b and d) respectively. The data for similar materials have been averaged and
represented as a single data point in these figures. Table. (2.1) displays the average
geometrical measures for 22 real crack mosaics studied.

Similar analysis on simulated crack mosaics shows that both in the (n, v,D)
and (n, v, λ) spaces, points corresponding to the Gilbert and Iterative Cell Division
are roughly closed in a region whereas the Voronoi tessellation yields another cluster
in the domains.

2.3.3 Including Hausdorff Measure for comparison

There was another metric that was used to compare between original image mosaics
and their corresponding Voronoi mosaics and it was the Hausdorff distance dH be-
tween the two network matrices. There are literature suggesting that many of the
real crack mosaics in nature follow Voronoi-like tessellation [30, 5]. The Hausdorff
distance dH measures the greatest of all the distances from a point in one set to the
closest point in the other set2. Here, the two sets are - i) the real crack network
and ii) the Voronoi network generated from the seeds that were the centroids of
the polygons in the crack mosaic. The Hausdorff distance dH was calculated using

2For compact subsets A,B ⊂ R2, the Hausdorff distance dH(A,B) is defined as
dH(A,B) = max{max

a∈A
d(a,B),max

b∈B
d(b, A)}, where d(x,C) = inf{∥x− c∥ : c ∈ C} .
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Table 2.1: Measures of real crack mosaics

Sample n v dH DN average
DN

λ average
λ

Bentonite 2.442 4.479 30.36 0.463 0.463 0.739 0.739

Laponite (pH10)
[81]

2.333 4.136 16.12 0.483 - 0.579 -

Laponite
(pH13.05)

2.048 4.0 42.48 0.415 0.446 0.618 0.6179

Laponite
(pH13.45)

2.410 4.093 33.61 0.484 - 0.625 -

Laponite
(pH6.73)

2.411 4.353 14.86 0.467 - 0.647 -

Corn starch [82] 2.5 4.166 16.40 0.466 0.446 0.674 0.614
Potato starch [82] 2.606 4.411 22.36 0.425 - 0.554 -

PDMS [83] 2.731 4.569 19.41 0.428 - 0.618 -
PDMS [83] 2.644 4.438 20.25 0.445 0.454 0.587 0.609
PDMS [83] 2.477 4.212 21.37 0.453 - 0.612 -
PDMS [83] 2.207 4.047 33.3 0.490 - 0.619 -

TiO2 (primary)
[84]

2.025 3.9 46.87 0.415 - 0.513 -

TiO2 (secondary)
[84]

2.419 3.794 17.88 0.461 0.438 0.497 0.505

Tempered glass
[85]

2.208 4.276 31.95 0.416 - 0.547 -

Tempered glass
[85]

2.309 4.141 29.15 0.428 0.422 0.548 0.547

Simulated glass
[86]

2.318 4.136 31.76 0.414 - 0.456 -

Simulated glass
[86]

2.415 4.236 31.78 0.407 0.411 0.498 0.477

Resin [2] 2.284 4.868 29.83 0.410 - 0.789 -
Resin [2] 2.063 4.482 32.52 0.370 0.398 0.657 0.724
Resin [2] 2.236 4.472 38.6 0.393 - 0.675 -
Resin[2] 2.071 4.35 42.72 0.418 - 0.775 -

Mud [87] 2.271 5.088 28.17 0.379 0.379 0.633 0.633
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modified Python library functions. Figure (2.8) displays the skeletonized real crack
mosaic, and its Voronoi mosaic constructed from the centroids of the polygons. The
Hausdorff distance from ‘skeleton to Voronoi’ dH(sv), is the distance between a pair
of points that are the farthest from crack skeleton to the Voronoi matrix, indicated
in Figure (2.8c). The Hausdorff distance between ‘Voronoi to skeleton’, dH(vs), is the
distance between the pair of points that again are the farthest from the Voronoi ma-
trix to the skeleton matrix, indicated in Figure (2.8d). These two distances usually
are not equal for inhomogeneous structures. The final measure of dH is the bigger of
the two Hausdorff values.

Table. (2.1), fourth column displays the Hausdorff distance of the crack
mosaics studied with respect to their corresponding Voronoi mosaics.

2.4 Comparing real and simulated crack mosaics

Comparing the topological characteristics in the n − v plane suggests that most
of the real crack mosaics studied were more towards the Gilbert tilings and the
Iterative cell division, ∼ (2, 4), except for the mud crack which was close to the
Voronoi tessellation, ∼ (3, 6). Figures (2.7b and d) display the geometric measures
D and λ respectively for all experimental and simulated cracks. Real crack systems
(experimental or natural) may thus be compared with the appropriate tessellation.
Most of the real cracks are thus more close to the Gilbert mosaic and not to the
cell division. Further, comparing the histograms of both the geometric measures,
the angular defect D and the isoperimetric ratio λ, the latter seems more efficient
in comparing between real and simulated crack mosaics. Figure (2.9) displays the
histograms of the isoperimetric ratio λ for a few crack mosaics of real systems studied
and Figure (2.10) displays the same for all the variations of the Gilbert and the
Voronoi type tessellations. For Gilbert tessellation, the shapes of the polygons and
thus the distribution of λ in the mosaic depends largely on the slope that a growing
crack makes with respect to a reference line and hence, Figures (2.10a-d), show a
broad dispersion even for the same kind of crack model.

Comparison of the distribution of λ values for real crack mosaics in Figure
(2.9) with that of simulated cracks in Figure (2.10) suggests that the mosaics of
TiO2, PDMS and Laponite at pH = 6.73 follow with the distribution of the Gilbert
tessellation with random slopes as in Figure (2.10a). Whereas, Laponite at pH =
13.45 has a λ distribution that is almost similar to the λ distribution of the Gilbert
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distribution with crack slopes tilted at 45 and 90 degrees only, Figure (2.10c). The
mosaic corresponding to the tempered glass , Figure (2.9e), has a close resemblance
to the bimodal distribution of Gilbert tessellation with slopes oriented at 0±10, and
90±10 degrees, Figure (2.10d). Similarly one may identify the λ distribution of
crack mosaics of resin, corn starch, and mud of Figures (2.10f, g, and h) with the
distribution observed in Voronoi mosaics of Figures (2.10e and f). This comparison
may suggest that the development of these real crack mosaics may have followed a
mechanism similar to their simulated counterparts.

The Hausdorff measure dH between the crack mosaic and its corresponding
Voronoi mosaic, given in Table.2.1, can also be used to compare the real crack systems
with the Voronoi tesselation. Of all the materials for which crack mosaics were
analyzed, corn starch showed the closest match with Voronoi cracks with dH = 16.
This supports the finding that in laboratory experiments corn starch shows columnar
joint-like cracking with a hexagonal Voronoi-type crack mosaic in the transverse plane
[93]. Thus studying crack patterns with the 4-parameter n, v,D, λ not only helps to
fulfill the purpose of characterizing different crack mosaics in terms of their materials
but also the qualitative comparison of the mosaics with their λ distribution and the
quantitative comparison with the Hausdorff distance helps to have an idea about the
tiling mechanism that the crack system follows.

2.5 Evolution of crack pattern in (n, v,D, λ)space:

The successful outcome of the (n, v,D, λ) measure further encouraged the idea of
observing the time variation of crack mosaics or the dynamical progression of cracks
in the (n, v,D) and (n, v, λ) spaces. In nature, there exist examples of crack tilings
that change their shapes gradually, finally settling to a stable tiling pattern [94, 30].
Columnar joints observed in lava basalt, and mud crack in river beds are such sys-
tems, Figure(2.11). The study to analyze static crack patterns (left out by the
dynamical process of desiccation and crack propagation) was then upgraded by ex-
amining dynamical crack mosaics with respect to the combined topological and ge-
ometrical measures. A colleague in the lab worked on simulating crack formation in
columnar joints following the thermal energy and elastic energy conservation prin-
ciple. In columnar joints the molten volcanic lava cools and cracks. The process of
fracturing advances downward making up new interfaces. These interfaces observed
along the height of the columnar joints were studied as mosaics following the same
n, v,D, λ measure.
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The mechanism that guided the evolution of the cracks was primarily based
on approaching thermal equilibrium in the system. Both convection and conduc-
tion processes were considered for heat transfer in the system. Usually, the vertical
boundaries carry the convective flow of gas/vapor while the interior of the columns
loses heat through conduction to the crack boundary. The heat flow is higher at
the crack interface and irregularity of the column widths causing irregular thermal
gradient results in movement of the crack tip. The crack tip moves towards the wider
column where the thermal gradient is higher [5]. We studied the gradual evolution
of tiling in these crack mosaics at different horizontal cross-sectional interfaces along
the column length. These interfaces underwent a metamorphosis starting from a
disordered-looking Gilbert tessellation to a well-ordered Voronoi tessellation. The
simulation started with the initial mosaic or the topmost interface being a Gilbert
mosaic or a Voronoi mosaic. The positions of the nodes in the crack mosaics were
changed following the thermal-field gradient. Figure(2.12 a) illustrates the thermal
flows in the columnar joints which in turn dictate the shift of crack nodes in each
time-step/ horizontal section, Figure (2.12b). Details of the algorithm can be found
in [95]. Variants were introduced in the simulation by considering different seed dis-
tributions, seed densities, and crack orientations. The time evolution of the crack
interfaces finally resulted in a Voronoi tessellation for every kind of variation. Esti-
mation of (n, v,D, λ) values at each time steps were done to map the evolution of
these crack mosaics as a trajectory of the 4-parameter tuple in the geometry-topology
domain. The analysis revealed that these trajectories in the (n, v.D) and (n, v, λ)
spaces depend on the crack seed distribution and crack orientation of the columnar
joints, Figure (2.13). An interesting result of the study was that an empirical rela-
tion between the energy of the crack system and the shape parameter, iso-perimetric
ratio λ of the mosaic was proposed, Eq.(2.6).

E = αλ−β + c. (2.6)

α and β are parameters and c is a system constant.The total system energy showed
a power-law dependence on λ with the exponent ≈ 0.3 at the final time of crack
maturation, regardless of the variation in the initial interface mosaic. The dynamical
process of the system moving towards energy minimization was thus manifested in
the topological-geometrical changes, in the form of evolving polygonal shapes along
the cross-sections of the columnar joints system.
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2.6 Discussion

This whole work of studying crack network characteristics in terms of topological
and geometrical measures was a relatively new approach, apart from the work by
Domokos et al.[79]. Images of real crack mosaics formed on widely different mate-
rials - natural mud, clays like Laponite and Bentonite, starch extracts of corn and
potato, polymers such as PDMS, metal oxide films, glass, and resins, were analyzed
with an attempt to sort them out on the basis of their topological and geometrical
properties. The intention was to find out whether crack mosaics can be classified or
distinguished according to their composite materials which the classical combinato-
rial n−v plane could not. For that, the approach that was taken was to combine the
system’s geometric features along with the combinatorial topological measures. The
approach was successful for the 22 mosaics studied. It was intuitive that the system’s
intrinsic properties, such as the nature of molecular bonding, physical or rheological
properties, etc have to affect the geometry of the tiling somehow but quantification
of that geometry through the new 4-parameter proposed, the n, v,D, λ was a novel
approach of characterizing crack tilings. This 4-parameter tuple (n, v,D, λ), carries
the unique combinatorial-geometric footprint of the crack mosaic. The topological
parameters v and n describe the vertex-edge connectivity of the cells of the crack
mosaic and their connectivity to neighboring cells. The geometric parameters D
and λ describe the regularity of the polygons and their shapes in the mosaic. The
four-parameter space was represented graphically as two 3-dimensional spaces - the
(n, v,D) space and the (n, v, λ) space. The study by Domokos et al. [79] indicated
that fractures and cracks on geological systems mostly belong to the ‘Platonic’ cat-
egory with v = 4 and some to the Voronoi category with n = 3, v = 6. Our study
resonated with it. Considering only the combinatorial (n, v) aspect, our studied crack
mosaics belonging to different materials, experimental and natural, (besides the ge-
ological ones studied in [79]), also fall approximately in either of these categories.
Further, these crack mosaics from different material classes were found forming dis-
tinguishable clusters in our modified 4-parameter phase space. This implies that
materials having physical and chemical similarities tend to have similar geometry of
cracks. It is hypothesized if a huge amount of data on crack patterns covering a wider
array of materials with multiple samples, gets provided in the 4-parameter(n, v,D, λ)
phase space, a crack mosaic of unknown material may be identified from its position
in the phase space.

Comparison of real crack mosaic with simulated crack mosaics(Gilbert, Voronoi,
Cell division) through the shape parameter λ gives hindsight about the geometrical
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tiling algorithm and the variation of seed distribution or slope of crack edges that the
crack network resembled. Voronoi tessellation was used as a reference to compare
with the real crack skeleton. Further, quantification of the deviation of the experi-
mental crack mosaics from their corresponding Voronoi counterpart was done with
the measure of the Hausdorff distance dH between the two.

It may be noted that all data on cracks in real systems, including some
experiments done by our group and some collected from other sources(that have
been categorically cited in the Table 2.1) were processed from images, that had
sometimes noisy or of insufficient resolution. The non-trivial part of this study was
to construct suitable in-house codes for accurate data extraction to estimate the
measures without errors along with tackling to address the vertex-edge connectivity
in non-convex polygons that were present in the studied images.

2.7 Conclusion

The conclusions of the study may be summarised as follows:

1. It is not possible to classify planar mosaics solely on the basis of the topological
combinatoric (n, v), the geometric features also need to be taken into account.

2. The 4-parameter tuple, (n, v,D, λ) serves as a possible marker for a full de-
scription of the crack mosaic.

3. Representative points of natural and experimental crack mosaics, of materials
with similar physical and/or chemical properties, are shown to form closely
spaced clusters in the 3-dimensional spaces (n, v,D) and (n, v, λ). This may
aid in the identification of an unidentified material from its crack pattern.

4. Crack patterns simulated from well-studied models, Gilbert and Iterative cell
division can be compared with real crack patterns with respect to the proposed
measures to have an idea about the mechanism of crack formation.

5. In-house codes have been developed to estimate the topological and geometric
measures of non-convex polygons, which appeared in the crack patterns.

6. This study inspired the idea of tracing the trajectory of time-development of a
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crack mosaic in the topology-geometry architecture (n, v,D, λ), later done in
[95].
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Figure 2.7: (a1)(n, v,D) space of real and simulated crack mosaics.(a2) Zoomed
in view of (n, v,D) data. (c1) (n, v, λ) space of real and simulated crack mosaics.
(c2) Zoomed in view of (n, v, λ) data for experimental and simulated crack mosaics.
Description of data points provided in the legend.(b) legends for (a1), (a2) and (d)
legends for (c1) and (c2).
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Figure 2.8: (a) Image of crack mosaic on Laponite clay of pH 6.73, (b) Image of
crack mosaic on Laponite clay of pH 13.05, (c) Hausdorff distance dH(sv) estimated
between the real crack mosaic (labelled with blue line) and its corresponding Voronoi
tessellation (labelled with black broken line) for (a), (d) Hausdorff distance dH(vs)

estimated between the real crack mosaic (labelled with blue line) and its correspond-
ing Voronoi tessellation (labelled with black broken line) for (b).
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Figure 2.9: Histogram of isoperimetric ratio λ for real crack mosaics of :(a) TiO2,
(b) PDMS, (c) Laponite (pH 6.73), (d)Laponite (pH 13.45), (e) Tempered Glass, (f)
Resin, (g) Corn starch, (h) Mud crack.
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Figure 2.10: Histogram of isoperimetric ratio λ for simulated crack mosaics: Gilbert
tessellations with slopes(a) random, (b) 0 and 90 degrees, (c) 0, 45, 90 degrees, (d)
0±10, and 90±10; Voronoi tessellation for (e) uniform and (f) normal seed distribu-
tion.

Figure 2.11: (a)Columnar joints [3], (b) Cracks in dried river bed [4].
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Figure 2.12: (a) Convection flow cooling, indicated by white arrows, takes place in
crack joints; conduction cooling, indicated by black arrows, takes place across column
interior. The dashed lines are the isotherms. Figure adapted with permission from
[5]. Copyright 1994 Elsevier. New crack deviates in the direction of the wider column,
following the higher thermal gradient. (b) Schematic for algorithm to estimatie the
shift in crack nodes in each time step of the simulation at different horizontal sections
of adjacent columns meeting at a point. Black circles represent centroids of the
neighboring polygons of the node(for which the shift is estimated for the next time
step) marked by red circle.
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Figure 2.13: Trajectory of the crack in the (n, v,D, λ) domain: Gilbert cracks with
uniform seed distribution and crack orientation - (a) random (b) parallel (c)±10◦ (d)
45◦ and 90◦ ; Gilbert cracks with normal seed distribution and crack orientation (e)
random (f) parallel (g)±10◦ (h) 45◦ and 90◦ (i) Voronoi cracks.
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Chapter 3

Studying the topological picture in
fluid dynamical systems:
Introducing the Euler
Characteristic Surface

3.1 Introduction:

After delving into the topology and geometry of static mosaics, the next step was to
investigate complex patterns within real fluid dynamical systems through the lens
of topology. This transition from static to dynamic systems opened up a new di-
mension of complexity and beauty. Fluid dynamics, inherently more intricate and
variable than static mosaics, presented an array of evolving patterns that required
sophisticated mathematical tools to analyze. The drying droplets can be the per-
fect examples of a complex non-equilibrium dynamical system that involves interplay
between several forces and parameters at the macroscopic level. A decent amount
of theoretical and experimental studies have been done to understand the fluid dy-
namics and surface properties governing the drying process in droplet, [96, 97] give
a compact review of the studies on droplet evaporation. In this study, the intention
was to look at the dynamical process of droplet drying by studying their dynamical
topological features and how the topological picture connects to the physical process.
For the study, the topological measure we used is one of the most well-known and sig-
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nificant invariants in topology, the ‘Euler characteristic’. Similar to other topological
invariants, it remains constant under continuous deformations (stretching, twisting
but not tearing) of a topological space. We intended to study a non-equilibrium
dynamical system that involves intriguing dynamic pattern formations through this
parameter.

The introduction and very first application of Euler Characteristic was done
in characterizing polyhedra by Euler [98]. Later, a wide range of theoretical work
has been done on Euler Characteristics of stationary point sets, both deterministic
and random [99, 100]. Its application became popular in different scientific fields
such as random fields [101], cosmology [102, 103, 104], neuro-science [105, 106], ma-
terial science [107, 108, 20], thermodynamics [109, 110, 111], percolation theory [112],
geophysics[20, 113] and complex data analysis[114, 115]. Euler Characteristic of a
complex can be defined in various ways. In algebraic topology, the Euler Charac-
teristic is defined as the alternating sum of k-dimensional Betti numbers [116] or
equivalently as the alternating sum of the number of k-dimensional simplices (This
will be discussed more in detail in Chapter 5). For a planar complex it is simplified
to the number of objects/clusters minus the number of holes present in a binary
network. [10].

χ = Nb −Nw. (3.1)

Where Nb is the number of black cluster(object) and Nw is the number of white
cluster(holes) in the binary network/image.

3.2 The physical system

The physical system we studied here is an evaporating droplet composed of a uniform
suspension of polystyrene beads in water, situated on a 40:1 polydimethylsiloxane
(PDMS) substrate. This substrate is soft, with an elastic modulus of 0.3 MPa. The
polystyrene beads, each with a diameter of 0.5 µm, were uniformly mixed with water
using a magnetic stirrer. A droplet of this solution, with a volume of 0.5 µl, was
carefully deposited onto the substrate, which had been cleaned first with deionized
water and then ethanol. The measured contact angle was approximately 120 ◦, in-
dicating that the substrate is both soft and hydrophobic. A vertically positioned
camera captured video footage of the droplet’s top view throughout the entire evap-
oration process. The temperature and relative humidity were maintained at 25◦C
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and 55%, respectively. Images were extracted from the video at various time points.

A sessile droplet can evaporate in a constant contact radius (CCR) mode,
where the initial contact angle decreases as evaporation progresses, or in a constant
contact angle (CCA) mode, where the contact area with the substrate decreases
over time. In some cases, a droplet may exhibit both modes at different stages of
evaporation. The specific mode of evaporation is determined by the cohesive forces
within the droplet and the adhesive forces between the droplet and the surface.

Figure 3.1: Different modes of droplet evaporation from a substrate- (a) Constant
contact radius (CCR) with contact angle decreasing with time, (b) Constant contact
angle (CCA) with contact radius decreasing with time. Fluid flow patterns in an
evaporating droplets on hydrophilic rigid substrate- (c) Arrows represent a schematic
of evaporation flux on droplet interface. The radial convective flow pattern towards
the triple phase contact line carrying particles is represented by dashed lines. (d)
Marangoni flows along a section of a droplet represented by arrows. The flow is
induced by the surface tension gradient along the fluid-air interface.

As evaporation proceeds, multiple fluid flow paths are established within
the droplet. The sessile shape of a droplet creates gradients in the evaporation
flux at the interface, which drives radial convection flow inside the droplet. This
convective flow transports suspended particles toward the triple-phase contact line
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(TPCL) on a hydrophilic substrate, increasing particle concentration in that region.
Consequently, solute concentration gradients develop, leading to surface tension gra-
dients that drive Marangoni flow within the drying droplet. The ultimate fluid paths
are dictated by the combined effects of convection, diffusion, Marangoni forces, and
DLVO (DerjaguinLandauVerweyOverbeek) forces. Several reviews explain the causes
and impacts of these flows. Evaporation induces clustering of the solute (beads) in
the solvent (water), resulting in a disordered and dynamically changing process that
moves toward a final equilibrium state. The dried deposition pattern can range from
a “coffee ring” to uniform deposition or more complex patterns.

Droplets on soft hydrophobic substrates, like those in this study, display
distinct flow lines during the early stages of evaporation. The evaporation flux is
reported to be higher at the droplet apex than at the base. The greater height-to-base
ratio of droplets on hydrophobic substrates contributes to higher thermal resistance
between the apex and base, particularly in liquids with low thermal conductivity,
such as water. Significant temperature gradients can develop, leading to thermo-
capillary and buoyancy-driven flows within the droplet.

The substrate in our experimental study is a soft surface, which deforms
slightly on the deposition of the drop. The PDMS surface produces a hydrophobic
contact angle ∼120 ◦. As discussed by [117, 118, 119, 120], this may lead to a large
temperature difference of a few degrees across the height of the droplet i.e. the top of
the droplet may be several degrees cooler than the bottom. This induces evaporative
convection flow from top to bottom along the drop boundary. An opposing thermo-
capillary flow is driven from the base of the droplet towards the top, due to vapor
trapped at the wedge-shaped depression at the base of the soft PDMS substrate.
The flow at the droplet interface is affected by the interplay of the flow lines of both,
the liquid and the gas phase.

3.3 Image Processing:

Most real systems are chaotic, resulting in inherently noisy images. Filtering out
noise effectively to extract useful information from images is a prominent area of re-
search. Our system was highly dynamic, with particles constantly moving inside the
droplet due to various forces, leading to significant noise in the images. Additionally,
photographing a convex surface from above introduces uneven light intensity distri-
bution in the captured image. Therefore, any topological analysis of these images
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involves a three-step processing procedure before any useful study can be conducted:
(i) thresholding for gray scaling and converting raw image data to binary data, (ii)
appropriately tessellating the binary file on a suitable geometric grid, and (iii) vali-
dating the codes used in the process.

The top convex surface of the drying droplet was captured using a video
camera placed vertically above to film the entire evaporation process. The video was
then sliced to obtain top-view photos of the droplet interface at regular time intervals
for analysis, Figure (3.2).

Figure 3.2: (I) Images of top surface of a droplet containing water and polystyrene
beads during evaporation with their binary images at (a) 12.24 min, (b) 16.25 min,
(c)20.24 min, (d)22.01 min, (e)25.241 min, (f)28.24 min, (g) 33.24 min, (h)39.24 min.
The binary images after applying a Gaussian filter are displayed alongside their orig-
inal images; (II) Time variation of Euler Characteristic during droplet evaporation.
The insets display the corresponding binary maps of the system.

3.3.1 Thresholding for grey scaling

The droplet of water containing micro-sized polystyrene beads evaporates in a con-
stant contact angle mode (CCA), meaning the contact area gradually decreases as

54



evaporation proceeds. As the water evaporates, the droplet remains convex upward,
with its curvature decreasing slowly over time. Each video slice corresponds to a
specific moment in time. In each snapshot extracted from the video, the lighting
from above appears uneven, with the central region being more brightly illuminated.
When this image is gray-scaled with a constant threshold, the central portion ap-
pears washed out compared to the peripheral region. This issue can be corrected by
applying an appropriate filter.

Using a constant threshold for gray-scaling such noisy images results in vary-
ing accuracy in binary mapping across different regions of the same image. Figure
(3.3) presents the best binary images of the system at different times, produced
with a constant threshold value. Comparing these with the corresponding actual
photographs (Figure 3.2) reveals a clear lack of detail.

Figure 3.3: Best possible binarization of images of the droplet at (a)16.25 min and
(d)20.24 min- without filter:(b and e); with Gaussian filter:(c and f), respectively.

A visual examination of the intensity profiles of the images (Figure 3.2)
suggested that the intensity distribution over the pixels was almost Gaussian. Figure
(3.4) supports this hypothesis, showing that the light intensity distribution in a real
image follows a Gaussian distribution. This observation led us to use a Gaussian filter
for thresholding the pixels to achieve better binarization. In Figure (3.4), the light
intensity distribution is well-fitted by a Gaussian function. Therefore, a Gaussian
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filter with suitable parameters has been applied to each image shown in the left
column of Figure (3.2).

Figure 3.4: Intensity distribution of the images. The black graph displays the inten-
sity distribution. The red graph is a fitted Gaussian curve.

3.3.2 Gaussian Filter

The Gaussian filter is a non-uniform low-pass filter. The kernel coefficients dimin-
ish with increasing distance from the kernels center. Central pixels have a higher
weighting than those on the periphery.

Let Y = [y1, y2, , yn] be a band-limited digitized signal that is sampled at a
frequency of fs (sampling frequency) and let N = [n1, n2, , nN ] be the noise sequence.
Assume that (ni)i=1...N is Gaussian distributed with mean µN and variance σ2

N. Let
YN represent the signal Y contaminated by the additive white Gaussian noise N so
that

YN = Y + N (3.2)

An estimate of Ŷ needs to be made such that the absolute value of the mean square
error in the estimate

|Y − Ŷ |2 (3.3)

is a minimum.
A Gaussian filter in the time domain is parameterized by its means µf and variance
σf

2 and is represented by

Gf (µf , σf
2, t) =

1√
2πσf

2 exp
−

(t−µf )2

2σf
2

(3.4)
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The standard deviation of the Gaussian function plays an important role in its behav-
ior. The values located between ±σ account for 68% of the set, while two standard
deviations from the mean (blue and brown) account for 95%, and three standard
deviations (blue, brown and green) account for 99.7%, Figure (3.5). This is very im-

Figure 3.5: Distribution of Gaussian function values.

portant when designing a Gaussian kernel of fixed length. Larger values of σ produce
a wider peak, i.e., a greater blurring. This requires that the kernel size must increase
with increasing σ to maintain the Gaussian nature of the filter. The Gaussian kernel
coefficients depend on the value of σ with the coefficients close to 0 at the edge of the
filter. The kernel is rotationally symmetric with no directional bias. This allows sep-
aration along directional axes for fast computation. Thus in a 2-dimensional system,
we need to use a 2-dimensional Gaussian function, which is simply the product of two
1-dimensional Gaussian functions, one for each direction. The Gaussian filter works
by using the 2-dimensional distribution as a point-spread function that is achieved by
convolving the distribution with the image. As the Gaussian distribution is non-zero
everywhere, an infinitely large convolution kernel is theoretically required to produce
a discrete approximation to the function. Fortunately, the distribution approaches
very close to zero at about three standard deviations from the mean. 99% of the
distribution falls within 3 standard deviations, which implies that we can normally
limit the kernel size to contain only values within three standard deviations of the
mean.

In the frequency domain Eq.(3.2) becomes

YN(kω) = Y (kω) + N(kω) (3.5)
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and the Gaussian filter Eq.(3.6)

G(kω) = exp(
−kω

2σf
2

2
) (3.6)

The estimate of the signal Ŷ (kω) due to filtering by Gaussian filter in Eq.(3.5)
can be written as

Ŷ (kω) = Y (kω)G(kω) + N(kω)G(kω) (3.7)

The error in the filtered output is given by

ϵ(kω) = Y (kω) − Ŷ (kω) (3.8)

i.e.,

ϵ(kω) = Y (kω)[1 −G(kω)] + N(kω)G(kω) (3.9)

The first term on the RHS of Eq.(3.9) represents the contribution from signal distor-
tion, and the second term represents the remainder noise after Gaussian smoothing.

Let the input and output signal-to-noise ratio(S), expressed in terms of
power(P)be respectively

Si =
PY

PN

(3.10)

So =
PY

PY − PŶ

=
PY

Pϵ

(3.11)

For a certain σ2
f , the Gaussian filter is able to filter the signal such that So > Si,

i.e., simultaneously remove the noise and not distort the signal. If σ2
f is increased,

the cut-off frequency and the bandwidth of Gaussian filter decreases. This results in
greater noise removal but increases signal distortion too. When σf → ∞, Si = So,
i.e. an all pass filter is obtained. The search is for an optimal σf,opt of the Gaussian
filter such that So is maximized, and this goal is achieved through either curve or
model fitting.

In the study, the function Ti,j, defined in Eq.(3.12) , was used for thresholding
every (i, j)th pixel of an image. In spite of best efforts, some significant details may be
missing in the central region of c-e in Figure (3.2) after thresholding, due to stronger
lighting there.
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(3.12)

Here (i, j) defines the pixel location in the square array of pixels and Xi,j is
the distance of (i, j)th pixel from the center pixel of the image. The threshold value
can be changed by varying the co-efficient α.

3.3.3 Image and tessellation:

Conventionally, images are digitized and stored as a rectangular array of values,
where the image is sampled at each point on a two-dimensional grid to store intensity
and implicit location information for each sample. Thus, a square grid is a natural
choice for tessellating any binary image file. However, hexagonal grids are reported to
be more effective for image processing due to their symmetric neighborhood and the
absence of corner-to-corner connections, as seen in square grids (Figure 3.6). Regions
composed of hexagonal cells (Figure 3.6a) do not suffer from the connectivity issues
commonly found in regions composed of square or triangular cells [7, 121, 122]. For
example, in the case of square cells, if 8-connectivity is chosen, the five square pixels
shown in Figure (3.6b) will form a single region; however, if 4-connectivity is chosen,
there will be two regions. Similarly, the six triangular cells in Figure (3.6c) illustrate
comparable issues.

A triangular lattice functions as cell groups for a hexagonal lattice, with the
centers of the hexagons corresponding to sites on the triangular lattice. In the fol-
lowing sub-section, the simulation of tessellating a triangular lattice to determine the
Euler characteristic for different occupation probabilities of its sites will be described
along with estimation of certain statistical characteristics of a triangular lattice. The
outcome will be compared against established analytical results to validate the sim-
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Figure 3.6: (a) Images composed of hexagonal cells do not present the connectivity
problems, sometimes associated with images composed of squares or triangles. As
can be seen from this figure (cases (b) and (c)), cells might appear connected by their
corners. (d)A random distribution of a simulated triangular lattice of size 16 × 16
with p = 0.48 with black clusters being marked in the picture. Hexagonal lattice
generated as a subset of triangular lattice, marked by red .

ulation. Next, the triangular tessellation code would be extended to a hexagonal
tessellation of the image for determining the Euler characteristic.

3.3.4 Euler Characteristic on triangular lattice:

A triangular lattice was generated having constant lattice distance. The sites of
the lattice were occupied randomly with probability p. The occupied sites were
marked as black and the vacant sites were marked as white. Each site has six nearest
neighbours which are all symmetric. Black(occupied) sites having black (occupied)
nearest neighbors, form a cluster of black (occupied) sites; and white(vacant)sites
having white(vacant) nearest neighbors, form a cluster of white(vacant) sites, Figure
(3.6d). Both the clusters of black and white sites were counted and labelled using the
Hoshen-Kopelman Algorithm[90]. For each probability p, the Euler Characteristic
χ(p) was calculated using the definition in eq.(3.1). p was varied from 0 to 1 in incre-
ments of 0.1. For each value of p, configuration averages of the Euler Characteristic
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was calculated over 1500 trials, till the results converged to within 0.01%. To check
for finite size effects, the study was done for lattice sizes 16 × 16, 32 × 32,64 × 64,
128 × 128, 256 × 256, 512 × 512, 1024 × 1024.

Figure 3.7: The variation of Euler Characteristic (χ)for triangular lattice of different
sizes. In each cases, the value becomes zero near the percolation threshold, pc = 0.5.

Since we used a triangular lattice to generate a hexagonal lattice for tessel-
lating an image file and creating its binary version, it was crucial to validate the
code for the triangular lattice. As part of our validation process, we first calculated
the Euler Characteristic on a triangular lattice with variable occupation probabilities
p, Figure (3.7). We also estimated several other features as functions of p, such as
the cluster size distribution, the percolation threshold, and the fractal dimension of
the percolating cluster. Finite-size scaling on different system sizes was performed
to determine the percolation threshold, which was approximate pc = 0.5. Our sim-
ulation results for the variation of the Euler Characteristic with p and the cluster
size distribution were in good agreement with the analytical results on the triangular
lattice reported by Sykes and Essam [9].
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3.3.5 Extension to hexagonal tessellation:

After validating our algorithm to calculate the Euler Characteristic, we moved to-
wards applying it on the image files that we had intended to. Images are typically
stored in square pixels, but better resolution can be achieved using a binary map
based on a hexagonal grid, as the latter does not have the diagonal connectivity
problem. A triangular lattice serves as the cell group for hexagonal grids; connecting
the centers of hexagonal grids forms a triangular lattice, as shown in Figure (3.6d).
The hexagonal grid was created by suppressing alternate rows and columns of the
square lattice of an image pixel file. This process can be done using any of the four
possible combinations shown in Figure (3.8) by alternatively suppressing rows and
columns in the square lattice [123]. We estimated the Euler Characteristic in ev-
ery choice for an image and found out that for large matrices/high resolution pixel
files, the value of the estimated Euler characteristic is almost the same for any of
the choices opted. Thus, our algorithm to compute the Euler characteristic of the
site percolation model for the triangular lattice was made suitable to compute the
Euler Characteristic of an image in the hexagonal grid format, as both have the same
6-symmetric neighborhood structure. The site (i, j) on the lattice is nothing but the
(i, j)th pixel that can be black /white. One can visualize the binary image as an
entire lattice consisting of black objects on a white or void background or vice-versa.
In our convention, if a grid point is black, it contains an object pixel and contributes
to clusters of the object, and if it is white, it contains a background pixel contributing
to the clusters of the background. The difference between the two complementary
clusters in the image/lattice gives the Euler Characteristic of the image, as defined
in eqn.(3.1).

To test the algorithm on images, the Euler Characteristic was estimated for
static patterns with known values of Euler Characteristic. The alphabets A,B and
C were chosen. The binary maps of the 3 alphabets were created by grey-scaling
at a constant threshold value of 0.5. The binary images were sub-sampled, i.e.
alternate rows and columns of the pixel array were suppressed, to get the hexagonal
grid-like structure. Finally, the Euler Characteristic of the sub-sampled images were
calculated using the same algorithm discussed in the earlier section for the case of
triangular lattice. The value of the Euler Characteristic was calculated for all 4
possible ways of sub-samplings, and the results were found to be identical. This
established that the final result was independent of the process of sub-sampling.
However, this is probably true only for those images that have a high density of
pixels. The values of the Euler Characteristic were estimated to be −1, −2 and 0
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Figure 3.8: The four possible choices to suppress rows and columns of square lattice
to turn into a hexagonal grid-like format.

for ‘A’, ‘B’, and ‘C’ respectively, as the background was also considered.

3.4 Evolving topological features of agglomeration

patterns and the dynamical system

Our studied system here was a tiny water droplet of ≈ 0.5 µL volume, containing
polystyrene nano-beads. The droplet evaporation time given the ambient conditions
(discussed in Section 3.2) was ∼ 40 minutes and within that time frame, the video
captured from the top view showed intriguing patterns forming and changing before
settling into an agglomerated cluster of coffee ring. These flow features and ag-
glomeration patterns are very specific to the compositions of the droplets, substrate
properties, and the ambient conditions. My interest was not to study the physical pa-
rameters, like contact angle, viscosity, morphology analysis in SEM, etc. that usually
are the standard methods in the droplet community. I was more drawn to under-
stand how the topological features were changing throughout this non-equilibrium
dynamical process as a consequence of the evolution of the different physical forces
present in the system. These flow patterns, observed experimentally, are visualized
through aggregation patterns or the movement of discrete particles (in our system
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- the polystyrene beads) that arrange themselves guided by the streamlines. Fig-
ures (3.2 a-h) show that the agglomeration patterns by polystyrene beads underwent
various changes in their aggregation pattern as evaporation proceeded. Polystyrene
beads have a very low negative surface charge in aqueous solution and the inter-
particle interactions can thus be neglected. So, it may be said that the arrangement
of the beads was mainly defined by the flow streams within the droplet.

To analyze and understand these topological features of the aggregation pat-
terns in the drying droplet (from the sequence of binary images recorded from the
flow) the topological invariant, ‘Euler Characteristic’ was used primarily in the study
and then progressed into introducing topological ideas that explored the multi-scale
time-evolution of the drying droplet through the image sequence. Many of the math-
ematical ideas in this section come from algebraic geometry and are motivated by
the idea of topological persistence in data science. The focus was always to miti-
gate instrumental and computational errors while working with these noisy images
coming from the disordered dynamical system.

3.4.1 Time evolution of the Euler Characteristic through im-
ages

The principal objective was to study the time evolution of the agglomeration pat-
terns through the topological invariant, the Euler Characteristic, and whether we can
characterize the topological changes happening throughout, in terms of it. The com-
putation process started with image processing and optimal thresholding to turn the
image sequences into binary matrices (discussed in Section 3.3). In the system of the
evaporating droplet of polystyrene beads in water, the polystyrene beads were con-
sidered as objects (black), while the water constitutes the background (white), Figure
(3.2). The clustering of the beads during evaporation was disordered and dynam-
ically changing while the system gradually advanced towards the final equilibrium
state. These dynamically evolving flow features were mapped via the variation of
the value of the Euler Characteristic with time. To estimate the Euler Characteristic
for each image, the hexagonal grid was used with the sub-sampling described earlier,
Section3.3.5.

Figure (3.9) shows the variation of the Euler Characteristic for the images at
different time intervals during the evaporation of the droplet. In the early times of
the evaporation process, the system was very chaotic, with particles spread all over
the droplet surface. This yields a high value for the Euler Characteristic(χ). As time
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Figure 3.9: Time variation of the Euler Characteristic (χ) of the evaporating droplet
system using a hexagonal grid. The insets display the corresponding binary maps at
different time instants.

progressed, The Euler Characteristic dropped gradually. The plot, Figure (3.9) shows
very little variation between 19 to 36 minutes indicating an almost stable aggregation
pattern during this interval. Between 36-40 minutes the Euler Characteristic falls
to ∼0 when a single thick ring was observed as indicated in the Figure (3.9). The
aggregation pattern of the particles remained in this configuration in the completely
dried droplet.

Along with the variation of χ with time, the size distribution of the clusters
of the objects in the images was also calculated at four different time instants. This
gives more clear information about the clustering process. Clusters varying within
100 sites have been binned together. This distribution has been displayed in Figure
(3.10). At the beginning of the evaporation, most of the beads were isolated, which
resulted in the surge of the graph at cluster size with value 1, Figure (3.10). At an
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Figure 3.10: Size Distribution of clusters at time instants (a) 17.05 min , (b) 22.01
min, (c) 25.24 min, (d) 39.24 min. A zoomed view is shown in the inset.

intermediate time of the evaporation process, the clustering of beads started due to
the interplay of the fluid flow processes in the drying droplet, this was reflected in
a rough exponential distribution of cluster sizes, inset of Figure (3.10). Towards the
end of evaporation, examination of Figure (3.2h) showed a complete clustering of all
the beads to form an almost single big cluster. This is correctly represented by the
presence of a single cluster of huge size in Figure (3.10).

It may be noted that the dynamical system studied was a drying droplet
on a soft PDMS substrate and during the drying process the particle number, i.e.,
the number of polystyrene beads remained constant in the entire droplet but the
curvature of the droplet decreased with time as the droplet flattened with progress
in drying. As all the images were photographed from a vertical position atop the
droplet, the number of particles that came into focus of the camera at a time was not
constant but increased with time. This may be treated as analogous to increasing
p, the probability of occupation by objects in a given system size, as discussed in
Section(3.3.4). The total number of ‘black’ pixels expressed as a fraction of the total
number of pixels contained in the system, may be defined as p in that case.
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3.5 Introducing the approach for multiscale study

of topological features:

Observation up to this was all right but it did not feel enough to satisfy the urge of
extracting all the topological features that we could see with open eyes! There was
something more that we were perhaps overlooking or failing to capture alone in the
time variation of the topological invariant, Euler Characteristic(χ). At this time, the
idea to look at a complex pattern at multiple scales of resolution came to us, which
is quite analogous to the philosophy used in Topological data science based on the
theories in algebraic geometry.

A binary image at a specific time was looked at different scales of resolution
r, where r > 0. This can be thought as the r-neighbourhood of a set being combined
along with the primary sets, for a given binary matrix. Given a set S ⊂ R2, we
defined the neighbourhood of S at scale r (where r > 0) to be the set Sr = {x ∈ R2 :
d(x, S) ≤ r}, where d(x, S) is the usual Euclidean distance of x from the set S. In
our case, the set S can be considered to be a particular cluster of black pixels in the
binary image, and the scale parameter r is a positive integer-valued. By this, at scale
r each of the black(object) clusters present in the binary image matrix gets replaced
by a cluster of black pixels including its r-neighbourhood with the already existing
cluster. The same idea is also used in topological data analysis, where one replaces
point sets by unions of r-balls centered at those points - and studies the topology
of the resulting structure given by the union of those r-balls. It is implied that if
the black clusters get replaced by their union with r-neighbourhoods (r > 0), the
resulting cluster pattern will have a smaller number of components that will again
be reflected in the Euler Characteristic χr of the binary image at scale r. Figure
(3.11) shows a binary image during the droplet evaporation at different values of
scale r. The ‘Scale 0’ image is basically the binary matrix yielded after optimal
thresholding of the image. As the r values of the scale keep on increasing, more
neighborhoods come into the union of clusters, decreasing the resolution. Looking
at images where there exist multiple features (small scale and large scale) along with
noises, it is very much required to consider this multiscale approach. The vortex-like
feature which was not loud and prominent in scale 0 gets more clear as we consider
the image at the gradually increasing scales. It is to be noted that here scale r
has only integer values as it depicts the integer neighborhood and discrete nature of
the pixel grid/lattice system. Therefore, we extended the analysis by studying the
connectivity of each binary image at increasing scales r to gain insight into the flow
- as recorded by the agglomeration patterns. Figure (3.12a) displays the variation of
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Figure 3.11: Top-view of drying droplet image as each black cluster is enlarged by
a scale of r-neighborhood. Scale r = 0 corresponds to the original binary image at
t=20.24 min. Scales in the figure vary between r = 0 to r = 7.

the Euler Characteristic (χ) with scale r for images at different time steps. There is a
drop in the χ value around scale 2. This was due to the removal of very small clusters
that got merged with comparatively larger ones. One may note that for a range of
scale r, χ took negative values for certain window of time implying the number of
loops present was more than the clusters of aggregation in the flow pattern. Again
Figure (3.12b) shows the time variation of χ at different scales r. the variation in
the curve as r increases and around scale 6, the curve shows minimum variation.
Since at a large scale, the resolution becomes very poor, where almost all clusters
get merged making a blob only! One may not analyze beyond that value of scale.
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Figure 3.12: (a) Variation of χ with different scales for constant times. (b) Variation
of χ with time at different r-neighbourhood scales.

3.6 Introduction to the Euler Characteristic Sur-

face (ECS) :

Studying the time variation and scale variation of the Euler Characteristic did not
give a compact overview of the dynamical system which is why we proposed to deliver
the multiscale connectivity information of the images described above for different
discrete time steps in the form of a surface which we call the ‘Euler Characteris-
tic Surface’. This design summarizes all the spatio-temporal topological changes
happening in the dynamical system into a condensed form through the Euler Char-
acteristic surface χs(r, t). The values of the Euler Characteristic χs(r, t) at different
scale r and time step t for the studied dynamical system which is the drying droplet,
were plotted as a surface in R3, Figure (3.13). Since the flow patterns or topological
features that are emerging and changing with time in a droplet, or in any dynamical
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system where we can see similar time evolution of connected patterns, are very indi-
vidualistic and unique to the system itself, one may consider the Euler Characteristic
Surface associated with the dynamical system as its unique topological signature.

Figure 3.13: The Euler Characteristic surface in scale (r) and time (t) of the drying
droplet. The experimental data points are marked by red circles, the blue surface
is the best-fit surface constructed by the r − t phase space. Two orientations of the
same surface are displayed in figures(a) and (b).

3.6.1 Euler Characteristic Level Curves

Along with the Euler Characteristic Curve came its projected contour plot that we
named as the ‘Euler Characteristic Level Curves’. Given an Euler Characteristic
Surface as discussed above, we considered the contour curves on a 2d surface. These
Euler Characteristic Level Curves are loci of constant χs on the surface χs(r, t), Fig-
ure (3.14a and b). Assuming that we can fit a smooth surface to the data generating
the surface χs(r, t), the tangent lines to the level curve at a specific point are or-
thogonal to the gradient ∇χ at that point. This gives the opportunity to develop
algebraic expressions of the level curves in such a case. The level curves plotted may
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Figure 3.14: (a) The Euler Characteristic Surface Level Curves. Curves having the
equal value of Euler Characteristic have χ displayed. Positive χ curves are bold lines
and negative χ curves are dotted lines. (b) Color plot of the Euler Characteristic
Level Curves. The color legend displays different χ values.

give a low-scale overview of the evolution of the Euler Characteristic(χ). The pinch
points in the level curves give the position of scale and time where a sudden change
in the value of χ, thus in the system’s topology takes place.

3.6.2 Proposing the Euler Metric for dynamical systems

The Euler Characteristic Surface introduced in Section (3.6) is a function χs(r, t) :
N× [0,∞) → Z. In this case, as we restricted to the scales 0 ≤ r ≤ R ∈ N and time
0 ≤ t ≤ T ∈ R, χs(r, t) is a compactly supported function χ : [0, R] × [0, T ] → Z.
Given sufficiently many data points, one can fit a continuous (even polynomial)
surface to the data points, so we can assume χ to be continuous. For a given R ∈ N
and T ∈ R, given a specific droplet drying situation one can calculate χ as a possible
descriptor of the drying process with specific parameters and can calculate its L2
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norm

∥χ∥2 = (

∫
[0,R]×[0,T ]

χ2)
1
2 (3.13)

Given two flows with parameter sets F1 and F2 for droplets of the same size,
one can calculate the corresponding Euler Characteristic Surfaces χF1 and χF2 , and
calculate the distance between these surfaces to be

d(χF1 , χF2) = ∥χF1 − χF2∥2 = (

∫
[0,R]×[0,T ]

(χF1 − χF2)
2)

1
2 (3.14)

We call the above-defined distance the Euler distance or Euler Metric between
the sequence of images describing these two flow situations. This is a well-defined
metric and makes the space of Euler Characteristic Surfaces (or, equivalently, the
corresponding space of sequences of images) into a metric space - even a Hilbert
space. This makes the theoretical framework proposed by us amenable to the full
range of available statistical techniques.

3.7 Discussion

Our aim in this work was to search for topological descriptors of a dynamically
evolving complex flow system via the topological invariant Euler Characteristic. The
drive was to investigate to what extent the time variation of the Euler Characteristic
may help to map the time evolution of a dynamical process. Such studies were not
done earlier, especially for time-varying dynamical systems. Our idea to analyze the
connectivity information of agglomeration clusters, changing with time, can be used
to understand the different physical flows that are running in the background. In
developing the code to estimate the Euler Characteristic of images, the essentiality of
finding an optimal filter for thresholding and choosing an appropriate grid structure
for the binary image data was realized. The codes were verified on sample images
and structures for accuracy.

The output of the scale-time-based variation of the Euler Characteristic of
particle aggregation pattern on the droplet interface can be useful to understand
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Table 3.1: Summary of topological tools studied

Sl. Proposed Topological
Tools

Flow Features Studied Ref.

1. Euler Characteristic The time evolution of Euler Character-
istic help study the clustering behavior
of suspended beads.

Figure
(3.9),
Section
3.4.1.

2. Euler Characteristic
at scale r > 0

More stable to noisy images of the flow.
A sequence {χr}r∈N help detect possi-
ble vortices in the flow.

Figure
(3.11),
Section
3.5.

3. Euler Characteristic
Surface

A multiscale topological summary of
the agglomeration patterns in the flow.

Figure
(3.13) ,
Section
3.6.

4. Euler Characteristic
Level Curve

A low dimensional signature that orga-
nizes the multiscale connectivity infor-
mation in a planar plot, which helps
study flow stability.

Figure
(3.14),
Sub-
section.3.6.1.

5. Metric on the space
of Euler Characteris-
tic Surfaces

A proposed similarity-dissimilarity
measure between distinct flow situa-
tions, that is amenable to statistical
techniques.

Sub-
section3.6.2.

the possible changes in the dynamics caused by the flow lines. Table.(3.1) gives a
summary of the different topological characteristics that were introduced as tools to
study topological features in a dynamical system.

3.7.1 Particle agglomeration features

The process of studying a flow pattern through sequence of binary images intro-
duces possibilities of loss of information - both instrumental and in thresholding. As
described in Section(3.5), we introduced several topological constructs to mitigate
this - in the form of Euler Characteristic at scale r > 0, Section(3.5), the Euler
Characteristic Surface χs(r, t), Section(3.6), and Euler Characteristic Level Curves,
Subsection(3.6.1).
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After all this, the natural response one may have is how these values of the
Euler Characteristic may correlate to the physical forces causing the non-equilibrium
system to gradually reach its equilibrium. Let us try to understand the hint that
one may obtain from the topological description of the flow images obtained at
different time instants of the evaporating droplet. The most observed topological
features of aggregation patterns in this case, along with their effect on the Euler
Characteristic are compared with actual images of aggregation of particles on droplet
interface, in Figure(3.15). The Euler Characteristic Surface (ECS) of the drying

Figure 3.15: Comparison table illustrating a schematic of topological features (col-
umn 1) and their reflection in Euler Characteristic Numbers (column 2), compared
with images of droplet interface features observed during different time instants of
evaporation (column 3).

droplet starts from a crest when almost all the polystyrene beads are uniformly
spread out in the droplet. Therefore, the number of black clusters Nb was very high
where beads remained like disjoint islands in the ‘sea’ of practically a single white
cluster. As drying proceeded, flow streams pushed the single beads into forming
clusters, decreasing Nb at the cost of increasing Nw as the ‘sea’ starts breaking up
into lakes. This is reflected in a sharp dip in the ECS as observed. A comparison
of columns 1 and 2 of Figure (3.15), supports the plausibility of this argument. As
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temperature gradient built up in the droplet after a while, the competition between
Marangoni1 and thermal buoyancy flows set in causing formation of vortices in the
drying droplet [124]. Viewing under high magnification, one can see the vortices
throw up a pair of ‘lobes’ - a comparison of droplet image with schematic in the
third row of Figure (3.15)- which is reflected in the Euler Characteristic with its
small negative value. Finally, towards the end of evaporation, the beads aggregated
into an almost single ring-like structure bringing χ value to ∼ 0. The ECS also
flattens out to coincide with the plane defined by the r − t plane. It is obvious that
the χ values obtained from the analysis of noisy images of the drying droplet will not
be a perfect match to ideal geometrical features represented in column 1 of Figure
(3.15). However, thus one may use ECS to interpret the flow changes that occurred
in this microscopic fluid flow system.

This study described a general pattern of flow in the drying droplet on a
hydrophobic surface. The images showed that it developed from a chaotic movement
to a clearly identifiable stable pair of vortices and finally led to a single ring-like
structure. This history captured in the images was quantified in the form of the
time variation of the Euler characteristic and further, it got a clearer description by
the Euler characteristic surface and Euler characteristic level curves. Later in the
Chapter 4 the tools are further applied to compare drying results and flow patterns
for droplets of different compositions under similar ambient conditions using the
formalism developed here.

3.7.2 Flow stability features

Euler Characteristic Surface can also be used to infer the most stable and persistent
topological feature present in the dynamical system. The platue-like region in ECS
where the variation in χ is very small compared to other regions may be considered
for this. However, the Euler Characteristic Level Curves provide better informa-
tion to understand the stability and frequency of flow lines. Examination of Figure
(3.14a and b) reveals almost parallel contour lines over the time range up to 25 min
approximately for the scale range between 0 − 4. This implies that without much
variation the topological features persist over this length scale emphasizing their sta-
bility over other noisy features. The density of contour lines in the aforementioned
time window indicates a very rapid change in χ values. The high density together

1Marangoni flow in an evaporating droplet refers to the fluid motion within the droplet driven by
surface tension gradients. These gradients arise due to variations in temperature or concentration
across the droplet’s surface during evaporation.
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with the parallel nature of lines indicate that though there is rapid dynamics leading
to the organization and re-organization of particles, the essential topological feature
is stable. The pinch points in the contour lines occurring at 15, 19, and 22.4 min
approximately, Figue (3.14b), indicate change over from one topological feature to
another.

The metric structure, “Euler Metric” proposed in Sub-section(3.6.2) can fur-
ther be used to predict stability between families of dynamical systems where one
may estimate the dynamical changes taking place due to the variation of a system
parameter through estimation of this metric between them. This is studied later in
Chapter (4).

3.8 Conclusion

This chapter thus presents the topological construct made to study complex disor-
dered dynamical systems through the invariant Euler Characteristic. For our studied
dynamical system − flow patterns in a drying droplet of polystyrene beads suspended
in water, studying the evolution of the Euler Characteristic (χ) with time provides
primary information about the change in clustering and connectivity along with time.
In general, this approach can be used to extract information on topological changes
of any complex system showing dynamical topological features via analyzing a time
series of images of the system.

The highlight of the study was the birth of the idea of studying Euler Char-
acteristic at multiple scale r > 0 of resolution, Section (3.5) for each image and
establishing a novel topological construct- the Euler Characteristic Surface χ(r, t),
Section(3.6). This proposed surface summarizes all topological features and acts as
the system’s topological signature. The associate construct of the Euler Characteris-
tic Surface, the Euler Characteristic Level Curves, Section(3.6.1) are also helpful to
get low dimensional summary of the topological evolution. They also can be studied
to identify persistent topological features and the pinch points of sudden topological
changes in a dynamical system. The proposed metric- which is L2 norm distance be-
tween two Euler Characteristic Surfaces, Section(3.6.2), has potential as a measure
to distinguish between flow situations in dynamical systems.

Using the proposed topological tools, the objective to efficiently extract the
topological information from dynamical systems through the time-sequence of binary
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images was met, and also non-trivial conclusions were drawn about the flow dynamics
solely from the observed aggregation patterns of polystyrene beads on the surface
of the droplet. This indeed made us hopeful with our approach and the study was
extended further for more dynamical systems with the same framework.
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Chapter 4

Characterizing fluid dynamical
systems using Euler Characteristic
Surface and Euler Metric

4.1 Introduction

The potential of Euler Characteristic (EC) as a topological invariant has already
been discussed in the last Chapter 3. In this chapter the effectiveness of the Euler
Characteristic Surface(ECS) and Euler Metric (EM), to quantify differences between
different dynamical systems is explored. The established topological prescription
gets applied for the analysis for simulated fluid dynamical system and for real fluid
dynamical systems. The aim was to investigate the efficiency of ECS and EM in the
analysis of complex dynamical systems. The studied simulated system was a flow
system whose evolution pattern was very sensitive to the variations in its single input
parameter. The tools ECS and EM succesfully captured the topological variation
in the system along with characterizing different regimes of the flow system. Along
with this an expimental configuration was done to study the comparison between real
systems with the established construct. As earlier micron sized systems of drying
droplets that were impregnated with large number of insoluble particles were studied,
this time two different set of droplets having two different composition of medium
and particles.
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In Section 4.2 the description about the systems and the details of the com-
puatation process are given where the deterministic model of simulated dynamical
flow pattern in Sub-section 4.2.1 and real stochastical systems of drying droplets in
Sub-section 4.2.2 are discussed. The outcomes of the analysis with the tools of ECS
and EM are discussed in Section 4.3. Studying topological measures of evolving pat-
terns as functions of space and time in 4.3.1 helps to understand the critical points
in the flow dyamics. In 4.3.2, application of the tools in distinguishing between com-
plex real systems of drying droplets is explored. Finally, the pros and cons of the
approach to study disordered dynamical systems with respect to their topological
evolution are discussed in Section 4.4.

4.2 Material and Methods

In previous Chapter 3, it was hypothetised that if we have two different dynamical
system, then the disimilarity between the two can be quantified by constructing their
corresponding Euler Characteristic Surfaces, followed by measuring the Euler Metric
between the two ECSs. In order to demonstrate that, the topological tools of Euler
Characteristic (χ), Euler Characteristic Surface χs(r, t) and the Euler Metric (EM)
are used to study the patterns in - a simulation of a deterministic fluid flow evolution,
and a stochastic fluid flow system. The objective of the application is to characterize
and distinguish between dynamical fluid flow systems.

4.2.1 Simulated dynamical fluid flow system

As we were intested in dynamical systems that exhibit interesting complex features
like vortices and loops, changing with time, we were searching for a model that could
exhibit such flow patterns. At that time we stumbled upon an old literature about
flow patterns in mixing [125]. When mixing, flow streamlines can form vortices
around a constant axis of rotation, leaving islands of unmixed liquids along that
axis. One way to address this issue is by varying the orientation of the axis of
rotation. A common stirring device, the egg-beater, often shows variations in flow
lines due to differences in design, typically referred to as ‘eggbeater flow’ [125]. In a
basic eggbeater flow, fluid flow is induced by a hand-held eggbeater with two inter
meshed rotating blades, one turning counterclockwise and the other clockwise. As
an example of our deterministic dynamical fluid flow system, a modified egg-beater
type of flow system was modeled.

The simulation followed an Eq.(5.8), where in each time step t, a point re-
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orients itself simultaneously along both coordinate axes, on a two-dimensional phase
plane. The point transformation was taken over a Poincare section of a [0, 1] ×
[0, 1] square window. The periodic nature of mixing was enforced by calculating
the position mod 1. Taking the velocity profile on each coordinate direction to be
vi = i(1 − i) for i = x, y, the motion of the particle was governed by the following
set of recursive equations,

xt+1 = xt − kyt(1 − yt)

yt+1 = yt − kxt(1 − xt)
(4.1)

Starting with a seed point, an iteration of the Eqs.(5.8), allowed upto a finite time
step, resulted in the flow pattern made of with the displacements suffered by a single
particle at discrete time-steps on a Poincare section. The flow pattern was found to
be independent of the seed point in the simulation. The seed point in the simulation
of the modified egg-beater flow system was chosen to be (0.9, 0.2). The picture,
yielded at any discrete time step thus depicted the flow pattern for a single particle
generated up to that time step. Figure (4.1) displays the flow patterns at different
time steps.

Figure 4.1: Patterns generated with k = 4.1 at time steps- (a) t = 500, (b) t =
1000,(c) t = 2000, (d) t = 3000, (e) t = 5000 and (f) t = 7000.

As one can see, in Eq.(5.8), the dynamical system depends solely on param-
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eter k. Depending upon the value of k, final patterns generated can be different. We
tried different values of k for trials. For higher k values, uniform particle flow over
the whole phase plane was observed. For 1 < k < 4 an almost linear flow movement
along the diagonal of the Poincare section was obtained with no significant vortices
or loops present. However for 4 < k < 5 intriguing changes in flow pattern was
observed, Figure (4.2). The patterns are plotted at the end of the final time-step of
t = 10000. The physical significance of k can be described as the parameter affecting
mixing frequency.

Figure 4.2: Final patterns generated after 10000 time steps for (a) k = 4.00, (b)
k = 4.20,(c) k = 4.40, (d) k = 4.60, (e) k = 4.80 and (f) k = 5.00.

As discussed in Chapter(3), studying the flow patterns with multi-scale ap-
proach was followed. This gave an idea about the significant features of the patterns
that existed over multiple scales r. Here, the flow patterns were analysed at increas-
ing scale, from r = 1 to r = 10 , where r = 1 indicates the original image simulated
with radius of points measuring 1 pixel unit. As the scale increases, the radius of
the black cluster increases including more neighbourhood around each black point,
as shown in Figure (4.3). If one may notice, the importance of examining the pat-
tern at different length scales is evident in the images in Figure (4.3). There exists
persistent islands of voids at all scales studied and and the beautifully symmetric
swirls get prominent at some specific scales only.
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Figure 4.3: Final pattern after 10,000 time steps for k = 4.1 at different scales
(a)r = 1, (b) r = 2, (c) r = 3, (d) r = 4, (e) r = 5, (f) r = 6, (g) r = 7, (h) r = 8.

We simulated families of dynamical systems with each system corresponding
to a k value. For each of the dynamical systems the Euler Characteristic Surfaces
were weaved that captured the spatio temporal topological evolution for each.

4.2.2 Stochastic flow systems: Flow patterns in drying droplets

Along with applying on simulated flow patterns, the earlier analysis on real droplet
system was further progressed with configuring similar experimental droplet evapora-
tions, with similar and different particles involved. The Topological tools EC, ECS,
EM were applied to compare between the droplet systems. Before applying the
tools the images went through appropriate image processing methods, as discussed
in Chapter (3). The study compared flow patterns during droplet evaporation for -
(i) two similar droplet systems and (ii) two dissimilar droplet systems.

One of the two droplet systems was the evaporating water-ethanol droplet
containing suspended silica flakes (diameter ∼70 nm ) on PDMS (40:1) substrate.
The other droplet system was the same droplet that we studied in Chapter (3),
i.e. the evaporating water droplet containing insoluble suspended polystyrene beads
(diameter ∼500 nm ) on PDMS (40:1) substrate. The key difference between two
stochastic systems were their compositions. The objective was to study the evapo-
ration features of these drying micro droplets and quantify the difference between
them by the Euler metric. The evaporation was studied on soft hydrophobic sub-
strate made of 40:1 polydimethylsiloxane (PDMS) as that facilated more free motion
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of the particles and comparably longer time of evaporation. For preparing the droplet
solutions, in one case, polystyrene beads were mixed with de-ionized water and for
the other case, nano-sized silica flakes were mixed with water-ethanol solution at
5 : 1 volume ratio. In both cases temperature was constant at ∼ 25 ◦C and humidity
fixed at ∼ 50 %. Uniform suspensions were achieved by mixing the components on
a magnetic stirrer. Droplets of volume 0.5 µL were deposited with micro-pipettes
on the prepared PDMS substrates. The evaporation dynamics of each droplet was
observed using an optical microscope with 20X magnification and stored as images
using a computer interface. In a set of repeat experiments, videos of the evaporat-
ing droplets were captured from the top view by using a CCD camera. Snapshots
from both processes are displayed in Figure (4.4). Image analysis for all the stud-

Figure 4.4: Top-view images of flow patterns at different time instants for 2 droplet
drying systems. The binary image is displayed along with every real-time image. (a)
Patterns of agglomeration while evaporation of water droplet containing polystyrene
micro-beads on PDMS substrate (40:1) at (i) 12.24 min, (ii) 15.24 min, (iii)18.24
min, (iv) 21.24 min, (v) 26.24 min, (vi) 29.24 min, (vii) 32.24 min, (viii) 36.24 min
and (b)Agglomeration patterns for evaporation of water-ethanol droplet containing
silica nano-particles on PDMS (40:1) substrate at (i) 3.12 min, (ii) 8.06 min, (iii)
10.23 min, (iv) 12.03 min, (v)14.15 min, (vi) 15.42 min, (vii) 16.39 min, (viii) 17.35
min.

ied droplet evaporating systems were done, dealing individually with each image.
Snapshots were sliced from the video of the top surface of the evaporating droplet,
followed by processing for optimal thresholding to obtain a binary image as faith-
ful as possible to the real snapshot, Figure (4.4). The binary image files were then
processed to compute Euler characteristic(χ) at different times of the evaporation
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process. Further, each snapshot was also used to compute Euler characteristic χ at
increasing scale r for every chosen time point t. Thus we built Euler Characteristic
Surfaces(ECS) for each droplet system.

4.3 Results and Discussion

In the following subsections we present the results and the corresponding analysis,
done with the tools of EC, ECS and EM on the studied fluid dynamical systems. The
outcome is discussed first for the deterministic simulated fluid flow system, followed
by the same for the stochastic droplet drying systems.

4.3.1 Analysis of simulated fluid flow

First, we studied the simple variation of Euler Characteristic (χ) of the final flow
pattern with changing the flow parameter k. The family of dynamical systems were
simulated with changing parameter k between 4 to 5 and the final pattern generated
after 10,000 time steps. k was varied with dk = 0.1 intervals but finer variation
of k (dk = 0.01) was considered for regions with significant changes in the χ vs k
plot, Figure (4.5). The change of χ (for the final pattern) is highly sensitive between
k = 4.00 to k = 4.4 , indicated as region A in Figure (4.5). In comparison, the
change in χ from k = 4.6 to k = 5.0 is comparatively low, indicated as region B in
same figure. This implie that the change in parameter k affect the final pattern’s
topology more in region A than that in region B. If one looks at the Figure(4.2),
the flow patterns corresponding to these k values makes this clearly evident. Thus,
the values of Euler Characteristic χ give us a qualitative idea about the topological
changes happening in the final flow pattern with changing k. But this analysis
does not capture the time evolution of the flow patterns as well as the multiscale
topological evolution of each pattern. The importance of examining the connectivity
of flow patterns at different length scales r, i.e at different resolutions has already has
already been discussed in (3.5). It is evident from Figure (4.3), the intricate details of
the patterns is prominent at certain scales and wash away in others while some persist
amidst the variations. A point to notice in Figure (4.3) is that there exist two whorls
in the bigger lobes, opposite to each other. The whorls persist through scale r = 2 to
r = 5 but are not prominent beyond that resolution. Whereas, bottom islands below
the lobes are more clear from scale r = 5 than at lower scale values.Thus different
features may get be highlighted at different scale of resolution and one can choose a
suitable r scale to focus according to the point of interest without being distracted
by other features. Therefore, capturing all possible topological information involves
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Figure 4.5: Plot of Euler Characteristic (χ) computed for final patterns i.e. after
10,000 time steps for different values of k in the simulated particle flow.

exploring the patterns at multi-scale resolutions.

The Euler Characteristic Surfaces(ECS), χs(r, t), were built for each of the
dynamical system of evolving flow pattern with a constant k. To quantify the changes
happening in the dynamical system described above for the variation of parameter k,
the Euler Metric (EM), between ECSs were estimated. The expression of the Euler
metric proposed in Chapter (3), may be recalled for this.

d(χx1 , χx2) = ∥χx1 − χx2∥2 = (

∫
[0,R]×[0,T ]

(χx1 − χx2)
2)

1
2 (4.2)

where the Euler Characteristic Surfaces need to be constructed up to scale R and
time T for the dynamical systems x1 and x2. To compute the integral in Eq.(5.1),
Monte Carlo integration discretization approach was followed where the aboslute
differences | dχ(r, t) |2 are computed between all the corresponding pair of points
(r, t) in the two ECSs that are being compared. It is therefore essential that the pair
of ECSs are of identical size and grid spacing.

Given two very differently evolving dynamical systems, their Euler Char-
acteristic Surfaces are expected to be different in view. This can be verified with
illustrating The Euler Characteristic Surfaces for the fluid flow pattern for the pa-
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rameter with k = 4.1 to k = 4.0. As seen in Figures (4.6 a and b) two very different
patterns were obtained after letting both the fluid dynamical systems evolve until
the same number of time steps t = 10, 000. As anticipated, the corresponding ECSs
too, turned out to be remarkably different, Figures (4.6c and d).

Figure 4.6: (a) Final pattern after 10,000 time steps foe k = 4.1 at scale 2, (b) Final
pattern after 10,000 time steps for k = 4.0 at scale 2, (c) Euler Characteristic Surface
for k = 4.1 and (d) Euler Characteristic Surface for k = 4.0

The Euler Characteristic Surface (ECS) for a few other values of ks in be-
tween 4 to 5, were also constructed. Figures (4.7 a-d) display the final flow pattern
with different kvalues along with their corresponding ECSs. Though some of the
ECS may look roughly similar, a quantitative measure of the similarity or dissimi-
larity between them was neede to be estimated by computing the Euler Metric (EM)
between two ECSs as defined in Eq.(5.1). Physically, the Euler Metric between any
two ECSs is a measure of the L2 norm distance between the surfaces as defined by
Eq.(5.1). The EM value between two ECSs does not depend on which of the two
surfaces is acting as the reference, besides it factors in the possible intersection of the
surfaces themselves, as shown schematically in Figure (4.8). The Table (4.1) shows
the estimated values of the Euler Metric(EM) between ECSs for flow dynamical
systems with k and k + dk.

For changing the parameter k by an amount dk = 0.1, the variation in EM
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Figure 4.7: (a) Final pattern after 10,000 time steps for k = 4.2 and its corresponding
ECS, (b) Final pattern after 10,000 time steps for k = 4.4 and its corresponding ECS,
(c) Final pattern after 10,000 time steps for k = 4.6 and its corresponding ECS and
(d) Final pattern after 10,000 time steps for k = 4.8 and its corresponding ECS.

d(χk, χk+dk) around any k is shown in Figure (4.9), the values are tabulated in Table
(4.1). The highest d(χk, χk+dk) values occur between ECSs corresponding to k = 4.0
and 4.1, marked by A in Figure (4.9). The drastic changes in flow patterns at these
k values, shown as insets in the figure, reflects effectively in the Euler Metric d.
However if the Euler Metric (dχk, χk+dk) between the two ECSs is calculated for
finer variation ,dk = 0.01, around same k = 4.0, the EM value is considerably small,
see region (B) of Figure (4.9). Thus for the studied simulated flow pattern, the
EM between two ECSs corresponding to dynamical systems with k and k + dk, is a
function of both k and dk, i.e. the EM d(k, k + dk) is a function of the scale of
resolution of parameter variation!

Another point that one can notice from Figure (4.9), there may be a region
where for any given dk, the variation in EM remains almost constant, e.g. between
points C and D. For variation with resolutions both dk = 0.1 and dk = 0.01, the
topological fluctuations in the flow pattern were substantially stable. This is also
evident in the snap shots of the final flow patterns in the insets of the Figure (4.9)
when k ranges between 4.5 to 4.6. Thus it may inferred that the dispersion in the EM
values for equal dk help in identifying stable regimes of the dynamical flow patterns.
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Figure 4.8: (a) Final pattern after 10,000 time steps for k = 4.1, (b) Final pattern
after 10,000 time steps for k = 4.0, (c) Euler Metric : Arrows indicate the difference
between corresponding points between the Euler Characteristic Surfaces for k = 4.1
and k = 4.0.

Further from Figure (4.9), the values of EM d(χk, χk + dk) in the range between
k = 4.5 and k = 4.9 have a comparatively smaller dispersion, indicating more sta-
bilized flow dynamics around this region. On the other hand, the dispersion in EM
around k = 4.0 is comparatively higher than the other values in the entire range,
implying that a drastic topological transition occured around that point, making it
a critical region. The ability to determine stability in flow dynamics with respect
to perturbations or variations in a parameter k via EM computation, adds to the
potential of the measure.

4.3.2 Analysis on stochastic dynamical fluid system

For application on real dynamical systems, three droplet systems were mainly con-
sidered: two being evaporating water-ethanol droplet containing silica flakes (these
are designated as Set 1 and Set 2); and the third one being an evaporating water
droplet containing polystyrene beads. The aim behind choosing such systems were
to examine as before − (a) How does ECS and EM quantify similarity between
the same kind of dynamical systems and (b) How does the dissimilarity in droplet
systems infused by the particles and medium reflect in our topological measure.
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Table 4.1: Measures of Euler Metric(dχk, χk+dk)

k values of ECSs Euler Metric

4.00 - 4.10 2,68,450

4.10 - 4.20 61,469

4.20 - 4.30 41,485

4.30 - 4.40 1,01,774

4.40 - 4.50 82,017

4.50 - 4.60 38,078

4.60 - 4.70 35,261

4.70 - 4.80 19,505

4.80 - 4.90 21,582

Figure 4.9: Euler Metric(d) computed for Euler Characteristic Surfaces correspond-
ing to flow patterns with k+dk and k. The insets depict flow patterns corresponding
to significant k values at the end of 10,000 time steps. EM is computed at two values
of variation dk as indicated in the legend. Point A marks EM between flow pattern
with k = 4.0 and 4.1, is a point of critical topological changes. The region between
C and D are stable flow regions.

After optimally threshrolding the images for each droplets, the prescription
to build the Euler Charactristic Surfaces for each of the three sets of dynamical
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Table 4.2: Measures of Euler Metric

Droplet Systems of ECSs Euler Metric

silica flakes droplet and polystyrene beads droplet 1691

two different silica flakes droplets 1355

flow systems were followed. Since the estimation of Euler Metric between two Euler
Characteristic Surfaces needs the necessity of both the system having similar ranges
along time axis and scale (or resolution) axis and total evaporation time for each of
the droplet systems was different, time (t) was normalised with respect to the total
evaporation time (te) of the particular droplet. Evaporation time, te, was 19 minutes
for the first droplet experiment with silica flakes (Set 1), 20 minutes for the second
droplet experiment with silica flakes (Set 2); and 40 minutes for the droplet with
polystyrene beads.

Figure 4.10: Euler Characteristic Surfaces − (a) for evaporating water-ethanol
droplets containing silica flakes for Set 1(blue) and Set 2 (orange), (b) for evap-
oration of water droplet containing polystyrene beads (orange) and water-ethanol
droplet containing silica flakes (blue).
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As mentioned before, all analysis of the droplet flow systems were carried out
on binary images of the real images, see Figure (4.4). Therefore, the analysis and
result depends highly on the optimization of the entire image processing procedure.
Suitable Gaussian filter was used to process the images, (discussed in Chapter (3),
3.3.2 ). After thresholding the binary matrices of the images were used to estimate
the Euler Characteristic χ at different times and length scales r and the Euler Char-
acteristic Surface(ECS), χs(r, t), was built for each of the droplet system. The ECSs
of the corresponding 3 droplet systems are displayed in Figure (4.10). The two ECSs
for the two water-ethanol-silica flake droplets, Figure (4.10a), almost coincide which
is not surprising. Figure (4.10b) displays the ECS for the water-polystyrene droplet
and a water-ethanol-silica flakes droplet and the Euler Characteristic Surfaces are
clearly different to each other.

To quantify the distance between the Euler Characteristic Surfaces, the
Euler Metric (EM) was computed for − (1) the two water-ethanol droplet sys-
tems containing silica flakes with same concentration, Figure (4.10a), and (2) the
water-polystyrene droplet system with the water-ethanol-silica droplet system, Fig-
ure (4.10b). To note, in both cases normalised time (t/te) was considered. The
estimated values of the Euler Metric (EM) are given in Table(4.2).
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Figure 4.11: Euler Characteristic versus time at scale r = 1 for evaporating water-
ethanol droplet containing silica flakes and for evaporation of water droplet contain-
ing polystyrene beads.
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As one may expect that the value of the Euler Metric for ECSs between two
similar droplet systems - the evaporating water-ethanol with silica flakes, to be close
to zero, but it is not. For deterministic systems, the Euler metric for two similar
dynamical systems is zero but in reality, replicating two similar dynamical systems
for such non-equilibrium phenomena like evaporating droplets having dynamic par-
ticle flow within, is almost impossible! The flow patterns are very sensitive to even
minor fluctuations in particle number, shape and size distribution, apart from am-
bient perturbations like air currents. Therefore, the value of estimated Euler Metric
between the ECSs of two experimentally similar droplet system is justified. Despite
this, the similarity in the variation of Euler characteristic(EC) against normalised
time at scale r = 1, for the two droplets containing silica particles, is unmistakable,
even though the magnitude of variation in χ is not the same, Figure (4.11). The
shape change in the χ vs normalized time(t/te) implies that some critical topological
changes occurred in the water-ethanol-silica systems around (t/te) = 0.7 and also
around (t/te) = 0.85. Comparing with the snapshots taken from the video, the peak
in χ, around (t/te) = 0.7, corresponds to the situation in Figure (4.4b,(iv)) where
maximum number of crystals were counted. This followed by the crystals started
joining together to form a large aggregates with small islands of fluid into them. The
sudden dip in the χ versus t/te curve, for t/te ≈ 0.85 corresponds to the situation
in Figure (4.4b,(vi)), which is another critical point in the dynamics when the large
crystalline aggregate with maximum holes within the network existed and after that
point it broke into dense clusters, elevating the χ values. The system is more or
less stable at other times. In contrast, the clear difference between the dynamics of
water-polystyrene and the water-ethanol-silica flake system is evident from the dis-
tinct difference in the nature and magnitude of Euler characteristic variation of the
droplets as shown in the Figure(4.11)( examine legends for different droplet systems).

Drawing a parallel between the simulated system and the real dynamical
system of evaporating droplets, the variation of parameter k in the former may
be taken analogous to changing the solution type of the two droplet systems. In
both the situations, the ECS and EM have been able to quantify the topological
change that follows the change in the dynamics of the systems. Along with helping
to distinguish between dynamical system the measure further helped in identifying
stability or critical regions in - the flow systems.
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4.4 Conclusion

To conclude the study, the application of our proposed topological construct on dy-
namical systems to quantify the similarity or dissimilarity between them was found
to be effective. The proposed hypothesis that the Euler Characteristic Surfaces(ECS)
behave like topological signatures for dynamical systems, was verified. The ECSs of
widely different dynamical systems were found to be widely different as well. Even
for the same family of dynamical systems, Euler Characteristc Surfaces(ECS) along
with the Euler metriic(EM) captures the variations due to a slight perturbations of
the single system parameter that often generate drastic changes in the dynamics.
While analysing evolving patterns in dynamical systems with the tools, the Euler
Characteristic(EC) and the Euler Characteristic Surfaces (ECS) give a qualitative
idea about the topological changes happening in the systems, the the Euler Met-
ric(EM) quantifies those changes. Though the effectiveness of the ECS and EM was
more pronounced in the studied deterministic simulated system, it was also evident
in studying very complex real systems of drying droplets.

The possibility of quantifying the similarity and dissimilarity between two
dynamical systems through a simple topological measure, Euler Characteristic Sur-
faces and the Euler Metric between them, is indeed a novel approach in Topological
Data Analysis and it shall be compared with the existing approaches in TDA in the
next chapter. In a nutshell, the significance of the Euler metric studied till now can
be summarized as :

• The EM is a powerful tool to sense the topological changes arising in a disor-
dered dynamical flow.

• The EM can help distinguish between completely different flow systems. For
any given fluid dynamical system:

– The EM value is a function of both the system parameter and its variation.

– The EM helps to distinguish between stable flow regimes as well critical
points of drastic changes in flow topology.

• Drastic variation in the EM may act as pointers to underlying differences in
physical principles responsible for changes in flow topology.

93



Chapter 5

The mathematical framework and
stability of the Euler
Characteristic Surface

5.1 Introduction

The last part of my dissertation, which was expanded after the successful endeavor
with the Euler Characteristic Surface(ECS) and Euler Metric(EM) in Chapters(3,4),
was to establish the detailed mathematical framework for the novel tools that we
had introduced. For that, I delved into Homology from which the idea of Euler
Characteristic Surface was inspired, studied the basics of the approaches used in
Homology to describe the topology of complex data, and tried to find the stability
of our tool with respect to the already established mathematical framework in Ho-
mology. Studying stability ensures that the introduced Euler Metric adheres to the
rigorous framework of algebraic geometry providing consistency within the mathe-
matical theory. Additionally, we aimed to explore and compare the usefulness of the
ECS and EM with the already existing ones.

In recent times, studying data in terms of its topology has been a rapidly
evolving field with approaches like Topological Data Analysis (TDA). Especially, for
complex data understanding the shape of the data often turns out to be advantageous
(We already saw its example in the last two chapters). The initial studies in TDA
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started with explorations of static data clouds [126, 99, 127] but gradually it is ad-
vancing towards analyzing complex data from different kinds of dynamical systems,
e.g. biological aggregation [128], social systems, gene networks [129, 130], economic-
s/financial data [131, 132], power engineering [133] etc. Different approaches have
been followed in building topological tools to study the shape of complex dynamical
data sets, e.g., crocker plots [128, 134], vineyards [135] maps, crocker stacks [136],
zigzag persistence [137, 138] etc. Most of these tools can be computationally complex
and stability results need to be further investigated.

This chapter focuses on establishing the mathematical foundations of the
topological tool, “Euler Characteristic Surface” (ECS) introduced in Chapter 3, that
summarizes the multiscale topological information of a dynamical data set and thus
helps in the characterization of and distinction between dynamical systems in Chap-
ter 4. It should be mentioned that a slightly different form of Euler Characteristic
Surfaces have been studied by different groups of authors [139, 140], but those works
do not consider time varying data.

This chapter is outlined as follows. A preliminary idea about the concepts
used from Homology is given in Section(5.2). Geometrical simplicial complexes such
as the Alpha Complex are defined and the viability of using it in the analysis of large
data sets is justified in 5.2.1. Concepts of persistent homology and its metrics - the
p-Wasserstein metric and the bottleneck metric - that are often used to distinguish
between data sets are discussed next in 5.2.2, followed by the pathway in establishing
a relation between Euler Characteristic Surface and the persistence modules, and the
stability of ECS under small perturbations of the data set proposed in 5.2.3. Besides
the theoretical framework, the robustness of the tools of ECS and EM is demon-
strated on two simulated dynamical data sets - (i) with a variable number of data
points and (ii) a conserved number of data points in Section 5.3. Sub-section 5.3.1
(modified eggbeater flow model) compares the ECSs constructed via two different
methods- coarse-graining and geometric simplicial complexes, along with testing the
stability of the Euler Characteristic Surface through the Euler Metric measured with
the dynamical data sets. The second model (Vicsek model), considered in 5.3.2, has
been used for comparing the ECS and the Euler metric with the Persistent Homology
tools. The focus of the work was to establish and validate the relations between Euler
Characteristic Surface and Persistent Homology, building the theoretical foundation
of our proposed topological construct.
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5.2 Mathematical Framework

In this section I shall briefly discuss the mathematical concepts and terms that are
related to our topological construction, ‘Euler Characteristic Surface’, and follow up
establishing the theoretical framework of our topological construction.

5.2.1 Cell Complexes and Euler Characteristic Surfaces

To begin with let us first simplify what precisely a dynamical system means here and
what is the basis of studying its topology. In this dissertation by dynamical system,
we refer to the time evolution of a finite set of points in some domain in Euclidean
space. The method that was used to explore these dynamical systems was to study
the time evolution of the topology of such a set of points via the topological invariant
Euler Characteristic χ. Along with the time evolution, analyzing the multi-scale
topology of the set of points was achieved.

In order to extract multi-scale topological information, first, one needs to
build cell complexes at a scale r ≥ 0 with the given set of points.
Cell complex: Cell complexes [116] are topological spaces built inductively by
attaching higher dimensional cells to the ‘lower dimensional skeleton’, where the
‘0-dimensional skeleton’ is the vertex set i.e. the point cloud to be studied. For
example,

• In the case of studying pixellated digital images, the cell complex used was the
complexes built from the set of pixels using the physically inspired ‘union of r-
neighborhood method’, Chapter 3, which can be called as ‘coarse-graining’(following
the algebraic geometry terminology).

• A cell complex can also be a simplicial complex which is commonly used for
studying the topology of a finite set of points. A simplicial complex is a collec-
tion of simplices that glue together following certain rules, discussed later in
this subsection.

Summarizing, Cell complexes break down complex spaces into simpler pieces
for analysis.
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Cell complex with coarse-graining:

In the last chapters, we dealt with both real image data and simulated data where we
used discrete grids and followed the ‘union of r- neighborhood’ or ‘coarse-graining’
approach to get the multiscale pictures of the dynamical patterns. Here, the same
approach will be described but in a more mathematical language, and then it will be
compared with the popular method of building a cell complex which is a simplicial
complex.

The construction rule for ‘coarse-graining’ is that given a finite set of points
F = {x1, x2, · · · , xn} ⊂ RN , where one replaces a point by a ball of some non-trivial
radius, the ‘scale’. More specifically, one replaces F by the set Fr = ∪x∈FBr(x),
which is the union of closed balls of radius r > 0 centered at each point of F . For
pixelated images or discrete grid points, each black pixel/grid gets replaced by the
union of that pixel with its nearest neighbors up to its r-th neighborhood, Figure
(5.1). Unlike F , the set Fr encompasses all possible topological features, with the
topology varying according to the value of r. For dynamical systems, the xi ∈ F
is time-dependent, i.e. xi is a function of t, and thus “coarse-grained” set can be
represented as Fr,t. The cell complexes can therefore be thought of as a spatio-
temporal data set. Once the cell complexes Fr,t get built at different scale r and
different time t, studying the dynamic topology of Fr,t can be done by estimating
the topological invariant - the Euler Characteristic for each complex.

Cell complex: Simplicial complex

Simplicial complexes can be thought of either as geometric structures in Rd where
‘simplices’ are assembled following some specific rules or as a purely combinato-
rial structure called an abstract simplicial complex. By simplices, one means n-
dimensional versions of triangles, e.g. a point being 0− d simplex, a line being 1− d
simplex, a triangle being 2−d simplex, etc. The definitions of the simplicial complex
followed by the definition of its variations are given below.

Definition 1. An abstract simplicial complex is a finite collection K of finite non-
empty sets such that if σ is an element of K, so is every non-empty subset of σ. An
element σ of K is called a simplex of dimension |σ|− 1. The dimension of the entire
simplicial complex K is max

σ∈K
dim(σ). A subset L ⊂ K is said to be a sub-complex of

K if L is also an abstract simplicial complex.

A geometric simplicial complex is clearly an abstract simplicial complex, and
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Figure 5.1: Schematic of Coarse-graining/union of r − neighborhood approach: (a)
pixels at scale 0 (no-coarse graining applied) (b) The nearest neighborhood of the
black pixels marked with blue color and the next nearest neighbors marked with pink
color, (c) coarse-graining applied at scale 1 with diagonal connections attached with
0.5 probability.

any abstract simplicial complex can be viewed as a geometric simplicial complex (its
geometric realization) 1. Therefore, henceforth I shall only refer them as simplicial
complexes. There are two commonly used methods of constructing simplicial com-
plexes on a set of points, the Vietoris-Rips complex and the Čech complex. In my
analsyis I used Alpha complex which is a variation of the Čech complex construction,
being an example of a Nerve Complex.

Definition 2. For a finite set of subsets U = {U1, U2, · · · , Un} in Rn, the Nerve
complex N (U) is defined by the rule, a subset σ ⊂ U is a simplex iff ∩i∈σUi ̸= ∅.

In Figure (5.2a, b)the construction of the Nerve complex for given subsets
is shown schematically considering the intersections of the subsets. Similarly, if one
considers a set of points P = {x1, x2, · · · , xn} ⊂ Rd, and B(xi, r) = {x ∈ Rd :
∥xi − x∥ ≤ r} is the closed ball of radius r, then the Čech complex at scale r is the
simplicial complex Čech(P, r) = {σ ⊂ P : ∩xi∈P ̸= ∅}. The Čech complex is the
nerve of the closed r-balls around the set of points P and encodes the intersection
pattern of the cells. Thus the Čech complex is homotopically equivalent 2to the

1Every abstract simplicial complex of dimension d can be geometrically realized in R2d+1

2In algebraic topology, two topological spaces are said to be homotopically equivalent (or ho-
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r-neighborhood of P , the cell complexes constructed through coarse-graining.

The problem with working with the Čech complex is that, for a set of points
in Rd, the Čech complex constructed on it may have arbitrarily high dimensions
depending on the intersection pattern of the closed r-balls. This method can therefore
lead to computational challenges, especially for large data sets. We shall resort to
using the Alpha complex which bypasses this. For a finite set of points in R2, the
Alpha complex can be defined as below 3.

Definition 3. Consider a finite set of points in F = {x1, x2, · · · , xn} ⊂ R2, no four
points lying on the same circle, and let r > 0. The alpha complex at scale r is defined
as the nerve of Vx ∩B(x, r), where Vx is the Voronoi cell corresponding to the point
x.

Figure (5.2c) shows the intersections between Voronoi cells and balls of ra-
dius r around a point cloud that generates the Alpha Complex shown in Figure
(5.2d). The alpha complex has the same homotopy type of Fr = ∪x∈FBr(x), and its
construction ensures that it is in R2 [141] [142].

The Euler Characteristic of a cell complex can be defined as the alternating
sum of the number of cells of each dimension. If K is a finite dimensional cell com-

plex, the Euler Characteristic is then defined by χ(K) :=

dim(K)∑
i=0

(−1)icard(σi), where

σi is the collection of i-dimensional cells in K. For simplicial complexes this simplifies
into alternating sum of n-dimensional simplices where n runs from 0 to dim of the
simplicial complex. For the simplicial complexes that were studied, following Figure
(5.2b) this comes down to the alternating sum of the number of points (different
coloured balls), the number of lines and the number of trainagles (filled with blue
colours). The above definition can be reformulated as an alternating sum of Betti
numbers (this is defined later in the section), which actually simplifies into the def-
inition of the Euler Characteristic, Nb −Nw, that was used in our cell complexes
built with “coarse-graining” or “union of r-neighborhood” method. To establish the

motopy equivalent) if they can be continuously deformed into each other. This concept is a central
idea in homotopy theory, which studies spaces up to such deformations.

3the Alpha complex was defined here in R2 as our applications were in that setting, but the
definition works in Rn
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Figure 5.2: (a) The collection of subsets, (b) The corresponding Nerve complex, (c)
Schematic to represent the intersection of Voronoi cells and balls of radius r around
a point cloud and (d) The corresponding Alpha complex.

mathematical relationship of our tool, The Euler Characteristic Surface, with ho-
mology, I shall henceforth adopt the notion of simplicial complex and refer to it as
χ(Kr,t), where Kr,t is the alpha complex at scale r on the dynamical system at the
time instant t. Here both parameters r, t can vary continuously and one gets a two-
dimensional surface as a map of the dynamical system. It is to be noted for Alpha
complex the scale parameter r need not be an integer but any finite positive value.
Figure (5.3) shows Alpha complexes of the same point cloud at different scales r.

The definition of Euler Metric (EM), which quantifies the difference between
two ECSs describing two different dynamical systems, may also be generalized as the
p-Euler Metric, by defining it using the Lp norm:

d(χ1, χ2) = ∥χ1 − χ2∥p =
(∫

[0,R]×[0,T ]

|χ1(r, t) − χ2(r, t)|p
) 1

p
(5.1)

with p = 1, 2. With p = 2, the Euler Metric (EM) is a Hilbert space metric. The
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Figure 5.3: Alpha complexes of a point distribution generated using Vicsek model
at scale − (a) r = 0.03, (b) r = 0.045, (c) r = 0.055.

intention behind this generalization can be understood later in Section(5.2.3) when
the stability of the metric gets tested.

Our technique can by summarized by the following flowchart. Starting from
a dynamical system {D} represented by a dynamic point cloud Ft, we create the
coarse-graining cloud Fr,t, from which create a family of complexes Kr,t which has
the same homotopy as Fr,t. Then we create a topological signature of the dynamical
system by the Euler Characteristic Surface χsr, t.

D = Ft 7−→ Fr,t = ∪xt∈FBr(xt) 7−→ Kr,t 7−→ χs(r, t)

5.2.2 Homology, Betti Surfaces and Persistence Diagrams

After defining the simplicial complexes, let us now be familiar with the concepts and
terms of homology that will be used further to establish the mathematical stability
of our topological framework. Homology provides a way to analyze and classify
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topological spaces based on their structural features, such as connected components,
holes, and voids. It assigns a sequence of Abelian groups4, called homology groups
to a topological space. These groups capture information about the space’s k −
dimensional features/holes.

Homology

Given a simplicial complex, one has k-chains, which are formal linear combinations
of k-simplices for a given dimension k, with coefficients in a convenient field of choice
( Z2 coefficients are chosen here, i.e. the coefficients are either 0 or 1). These k-
chains are equipped with the natural addition operation and form an abelian group

Ck, [Ck =
N∑
i=1

aiσi, where σ0, σ1, ..., σN are k-dimensional simplices of the simplicial

complex and ai are the coefficients]. The boundary of a k-simplex is defined as the
sum of all its (k − 1)-dimensional faces, and this definition extends to all k-chains
as well. This creates a boundary homomorphism ∂k from chain group Ck to chain
group Ck−1. A k-chain with empty boundary is called a k-cycle(∂k(C) = 0), forming
a group Zk of k-cycles, which is a subgroup of Ck. On other hand, a k-chain b is
defined as a k-boundary if it is boundary of a (k + 1)-chain, d. (i.e. b = ∂k+1(d) ).
Thus a group Bk of k-boundaries is formed. Since, ∂2 = 0 , the Bk is a subgroup of
Zk. Finally, the k-th homology group Hk is the quotient of the k-th cycle group by
the k-th boundary group[Hk = Zk/Bk], and the k-th Betti number βk is the rank of
this homology group. This group measures the k-dimensional holes in the simplicial
complex by identifying cycles that are not boundaries. For further details on the
theory of homology, see [116].

Persistent Homology

The framework of homology can be expanded with studying multiscale topological
features as often in dynamical systems some features are observed to persist over
several length scales indicative of some inherent significance. While the detection
of topological features, e.g. “holes” or lack of matrix in an appropriate dimension
in a simplicial complex arising from a point cloud, can be done using the device of
homology ; for quantifying the “persistence” of such topological features/holes, one
needs to further follow persistent homology. In Topological Data Analysis (TDA)
one of the most established tools is Persistent Homology. A very brief idea of the

4An Abelian group is a set combined with an operation (like addition or multiplication) that
satisfies four main rules: closure, associativity, identity, and inverse.
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apparatus of Persistent Homology is given here.

The workflow of Persistent Homology begins with the process of filtration.
For a static point cloud, the associated Alpha complexes for a given filtration(at dif-
ferent scales) make the set of sub-complexes, ∅ ⊂ K0 ⊂ K1 · · · ⊂ Kn = K (0, 1, 2, ..., n
being the different scales of filtration). One also gets a sequence of associated ho-
mology groups Hk(K0) → Hk(K1) → · · · → Hk(Kn), and - for each value of scale
s < t - the induced homomorphism f s,t

k : Hk(Ks) → Hk(Kt). The kth persistent
homology group Hs,t

k is the image of f s,t
k , and the corresponding kth persistent Betti

number βs,t
k is the rank of Hs,t

k . While the kth persistent Betti number quantifies how
many of the homology classes (cycles) of Ks still survive in Kt, the entire picture
is graphically represented in a k-dimensional persistence barcode and k-dimensional
persistence diagram. The k-dimensional persistence diagram is a multi-set of points
(b, d) that records the k-dimensional homology classes that are ‘born’ at filtration B
indicated by coordinate b and ‘die’ at filtration D indicated by coordinate d. Figure
(5.5) shows a schematic of Persistence diagram. For further details on the theory of
persistent homology, see [141].

These Persistence Diagrams are also used to compare between data sets.
There exists a few measures that quantify the difference between two persistence
diagrams corresponding to two sets of point clouds. Of the metrics that are usu-
ally considered in the space of persistence diagrams are the bottleneck metric and
the p-Wasserstein metrics [141]. To estimate the difference, one creates bijections/-
matchings between two persistence diagrams (including diagonal points) and takes
the infimum of all the matching distances in the appropriate norm (ℓ∞ or ℓp), Figure
(5.4). In the case of Bottleneck distance, the matching distance for each match is the
maximum of the d∞ distances. For the Wasserstein metric the p-th root of the sum
of all p-th powers of d∞ distances in a match is considered as the matching distance.
Finally, in both cases, the minimum of all the matching distances is considered as
the metric value. The table in Figure (5.4) portrays the step-by-step estimation of
the above metric distances. Formally, the p-Wasserstein distance (p can be 1, 2, · · · ,
∞) between two k-dimensional persistence diagrams A and B is given as: 5

Wp(A,B) = inf
π:A→B

[ ∑
(b,d)∈A

∥(b, d) − π(b, d)∥p∞
] 1

p
(5.2)

5Note that the ambient metric is the d∞ metric on the plane.
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Figure 5.4: (a)-(g) represent different possible bijections or matching between two
Persistence Diagrams(red and blue), (h) The table showcases the matching distances
and the estimated metrics.

Betti Curve and Betti Surface

In the next Section,(5.2.3) the relationship between the Euler Characteristic Surface
will be set up with Persistent Homology. For this purpose and for convenience of
visualization, let us define - for an alpha complex at varying scale r and fixed time
t∗ - the k-dimensional Betti Curve βk(Kr,t∗). The k-dimensional Betti Curve at scale
r and time t∗ gives the value of k-th Betti number which measures the number of
k-dimensional holes in the Alpha complex, Kr,t∗. Similar to the construction of the
Euler Characteristic Surface, one can define k-dimensional Betti Surfaces βk(Kr,t).
Now, since Euler characteristic can be defined as the alternating sum of Betti num-
bers, one can yield the Euler Characteristic Surface from the Betti Surfaces with the

relation: χ(Kr,t) =

dim(K)∑
n=0

(−1)nβn(Kr,t)
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5.2.3 Comparison with Persistent Homology

Though Persistent Homology is a well-established topological tool in data science,
it is computationally unwieldy and expensive in big data analysis, especially in the
context of time series data that come from dynamical systems [143, 144], and the
outputs of Persistent Homology are often not suitable for using directly into machine
learning algorithms [145]. In this context, our apparatus of Euler Characteristic
Surface(ECS) with the appropriate Euler Metric provides a computationally inex-
pensive tool. In this section, I try to set up the relation between our construction of
Euler Characteristic Surface and Persistent Homology through Betti Surfaces. The
relations further strengthen the mathematical stability of our tools.

Time-Slice wise stability of ECS against Persistent Homology

Firstly, I employed the methodologies detailed in sources [146] and [140] to analyze
the stability of a time-slice of the Euler Characteristic Surface at a specific moment
(t = t∗) with the information obtained from the corresponding time-sliced Betti
Surfaces and hence from the corresponding persistence diagrams. This analysis is
included to ensure the completeness of our exposition, particularly since our context
involves the spatiotemporal Euler Characteristic Surface (which deals with time series
data, unlike the context in [140]). Additionally this helped to determine which of
the Lp,(p = 1, 2) metric is the appropriate choice for ECS. The main idea of setting
up the mathematical framework can be described by the following diagram:

{
PDn(K)

}∞

n=0
7−→

{
βn(Kr)

}∞

n=0
7−→ χ(Kr)

The sequence of Betti curves/surfaces can be constructed from the corre-
sponding persistence diagrams, and the Euler Characteristic curves/surfaces can be
constructed from the corresponding Betti curves/surfaces.

Given a simplicial complex K = {Kr}r>0 with the filtration function deter-
mined by the scale r, let βn(Kr) be the n-th Betti number of Kr. Let PDn(K) be
the n-dimensional persistence diagram of the filtered simplicial complex K, and the
complete persistent diagram is PD(K) = ∪dimK

n=0 PDn(K). As mentioned earlier, the
Euler Characteristic of the simplicial complex Kr = K(r, t∗) with scale r at time-slice
t∗ can be expressed as alternating sums of Betti numbers χ(Kr) =

∑
n (−1)nβn(Kr).
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Figure 5.5: a schematic of persistence diagram. The points within the shaded box
whose birth at ≤ r and death at > r contribute to the simplicial complex at scale r
and so to the Betti r curve.

Definition 4. The n-dimensional Persistent Betti r-curve of K is defined as follows,
where 1[b,d) is the indicator function of the interval [b, d).6

βn(PD(K), r) =
∑

(b,d)∈PDn(K)

1[b,d)(r)

Lemma 1. βn(Kr) = βn(PD(K), r)

Proof. From the Fundamental Lemma of Persistent Homology [141], βn(Kr) equals
the number of points (b, d) in the n-dimensional persistence diagram of K such that
r ∈ [b, d) (see Figure (5.5)). This correlates the Betti curve with the Persistence
diagram.

6The indicator function is defined as,
1[b,d)(x) = 0 if x /∈ [b, d),
1[b,d)(x) = 1 if x ∈ [b, d)
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Figure 5.6: (a) and (b) are the possible orientations for (bk, dk) and (bl, dl) for a
possible optimum matching between a pair of points from two different persistent
diagrams. Matching (c) is not optimal.

Lemma 2. For either of the configurations in Figure (5.6 (a) or (b)), the following
inequalities hold:

∥1[bK,dK)(r) − 1[bL,dL)(r)∥1 ≤ 2d∞((bK, dK), (bL, dL)) (5.3)

∥1[bK,dK)(r) − 1[bL,dL)(r)∥2 ≤
√

2d∞((bK, dK), (bL, dL)) (5.4)

Proof. In each of cases 5.6 (a) or (b), the inequalities 5.3 and 5.4 can be verified.
For example, for the configuration of Figure (5.6 (a)), ∥1[bK,dK)(r) − 1[bL,dL)(r)∥pp =∫ bL

bK
|1−0|p+

∫ dK

bL
|1−1|p+

∫ dL

dK
|0−1|p = |bL−bK|+ |dL−dK| ≤ 2d∞((bK, dK), (bL, dL)).

A similar calculation works for the configuration of figure 5.6 (b).
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Theorem 1. Let K and L be simplicial complexes with non-zero persistence diagrams
in a finite number of dimensions and with each persistence diagram containing finitely
many non-diagonal points. Then the Euler Characteristic Surface sliced at t = t∗
with the Euler 1-metric and the Euler 2-metric satisfies the following inequalities
(the first one with respect to the 1-Wasserstein metric) at the finitely many non-zero
persistence dimensions. In particular, where N = max{dim K, dim L},

7∥χ(K(r, t∗)) − χ(L(r, t∗))∥1 ≤ 2
[ N∑

n=0

W1(PDn(K), PDn(L))
]

(5.5)

∥χ(K(r, t∗)) − χ(L(r, t∗))∥2 ≤
N∑

n=0

∑
i

√
2d∞((bKi , d

K
i ), (bLi , d

L
i )) (5.6)

Proof. Following [140], an optimal matching between the two persistence diagrams
with points {(bKi , d

K
i )}, {(bLi , d

L
i )} can be considered, with the 1-Wasserstein or 2-

Wasserstein metric. For an optimal matching between two persistence diagrams
with either the 1-Wasserstein or 2-Wasserstein metrics, configurations of pairwise
matching between points in Figure (5.6), (a) or (b) are possible. However, con-
figuration 5.6 (c) is not possible under either of 1-Wasserstein or 2-Wasserstein
metrics, as matching the points to the diagonal provides a better matching (as
|bL − bK |p + |dL − dK |p > |bK − dK |p + |dL − bL|p for p = 1, 2). Now, inequality
(5.3) along with definition (4) and lemma (1) can be used to prove-

7See [140] in the context of Euler Characteristic Curves
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∥χ(Kr) − χ(Lr)∥1 = ∥
∑
n

(−1)n(βn(PD(Kr)) − βn(PD(Lr)))∥1

≤
∑
n

∥(βn(PD(Kr)) − βn(PD(Lr)))∥1

≤
N∑

n=0

∑
i

2d∞((bKi , d
K
i ), (bLi , d

L
i ))

≤ 2
N∑

n=0

W1(PDn(K), PDn(L))

Similarly, using inequality (5.4)-

∥χ(Kr) − χ(Lr)∥2 = ∥
∑
n

(−1)n(βn(PD(Kr)) − βn(PD(Lr)))∥2

≤
∑
n

∥(βn(PD(Kr)) − βn(PD(Lr)))∥2

≤
N∑

n=0

∑
i

√
2d∞((bKi , d

K
i ), (bLi , d

L
i ))

Remark 1. It is to be noted from Theorem 1 that the spatiotemporal Euler Charac-
teristic Surface with the Euler 1-metric has better stability properties with respect to
the corresponding persistence diagrams with the 1-Wasserstein metric, as inequality
5.5 is independent of the number of points of the persistence diagram. In compari-
son, for the Euler 2-metric, we have an inequality 5.6 that depends on the number of
points of the persistence diagrams. This pattern follows the existing stability results
for other topological summaries [147] [146], where the distance between the sum-
maries is bound from above by the 1-Wasserstein distance between the corresponding
persistence diagrams.
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Remark 2. The spatiotemporal Euler Characteristic Surface has been defined using
continuous filtration in terms of the scale parameter. In practice, the ECS is calcu-
lated at points of a discrete subset of scales S, so a proper choice of S is important to
ensure that the discrete subset of scales preserves all the information about changes
in the original continuous filtration. In particular, one needs to consider all the crit-
ical scales r1 < r2 < · · · < rm, where the critical scales are those where at least one
new simplex is created (as the underlying Delaunay complex is finite, there are only
finitely many critical scales). This needs to be kept in mind while discretizing the
left side of the inequalities in Theorem 1, to ensure that inequalities 5.5 and 5.6 are
satisfied.

Stability of ECS against perturbations of the data set

After establishing the stability of L1 and L2 Euler Metric with respect to the met-
rics in Persistent Homology, the next objective was to examine the temporal sta-
bility of the Euler Characteristic Surface construction. It was found that for finite-
dimensional discrete dynamical systems where continuity properties can be assumed,
one may have temporal stability of the Euler Characteristic by using a Wasserstein
stability theorem as described below.

For this analysis one may view our setting to be finite simplicial complexes
with sub-level filtrations based on (simplex-wise) monotone filtering functions 8. For
example, the Rips complex on a finite data set gives rise to such a filtration, where
the filtration function is the diameter of the simplex. For our case, the Čech (Al-
pha) complex on a finite data set gives rise to such a filtration, where the filtration
function is the radius of the smallest enclosing ball of a simplex (of the Delaunay
triangulation).

To examine the temporal stability, a recent powerful and useful result, “Cel-
lular Wasserstein Stability Theorem” was used which is stated below.

Theorem 2 (Skraba -Turner, [148]). For monotone functions f, g : K → R on a
finite simplicial complex K, we have:

Wp(PDn(f),PDn(g)) ≤
[ ∑
dim σ∈{n,n+1}

|f(σ) − g(σ)|p
]1/p

(5.7)

8A filtering function f : K → R is said to be monotone when τ ⊂ σ implies that f(τ) ≤ f(σ)
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The above, along with results from Section 5.2.3 gives the temporal stability
result for Euler Characteristic Surfaces which is presented as a theorem in 3. Below
we will say a discrete dynamical system X is (temporally) uniformly continuous if
for each ϵ > 0 there is δ > 0 such that for each point xt ∈ X we have d(xt+δ, xt) < ϵ.

Theorem 3. Let Xt = {x1(t), · · · , xM(t)} be a (temporally) uniformly continuous-
discrete dynamical system with finitely many points in R2. Then for a sufficiently
small 0 < ϵ < 1

2
min∥xi(t0) − xj(t0)∥2, there is δ > 0 such that if K(r, t) be the Čech

filtration 9 on Xt, we have ∥χ(K(r, t0)) − χ(K(r, t0 + δ))∥1 ≤ 1
3
M(M + 1)(M + 2)ϵ.

Proof. One can note that for any acute-angled triangle T in R2 and for any ϵ > 0,
there is an δT > 0 such that after perturbing the vertices by δT , the circumradius
of T is changed by at most ϵ (this follows from the continuity of the circumradius
function of a non-degenerate triangle).

Let ϵ > 0 be less than 1
2

min1≤i ̸=j≤M∥xi(t0) − xj(t0)∥2. Choose δ > 0 such
that for xi(t) ∈ Xt we have d(xi(t0 + δ), xi(t0)) < min δT , where the minimum is over
all acute-angled triangles formed by points of Xt0 . Take the filtering function on a
simplex in theorem 2 to be the radius of the smallest enclosing circle of the points
defining the simplex, with f corresponding to points at time t0 and g corresponding
to points at time t0 + δ.

Then, by theorem 2, we have for n = 0, 1 the following inequalities (for the
inequalities below, note that the smallest enclosing circle of a finite set of points in
R2 is realized by either two of those points (diametrically opposite) on the circle, or
by three of those points on the circle):

W1(PD0(f),PD0(g)) ≤
(
M

1

)
ϵ +

(
M

2

)
ϵ =

(
M + 1

2

)
ϵ =

1

2
M(M + 1)ϵ

W1(PD1(f),PD1(g)) ≤
(
M

2

)
ϵ +

(
M

3

)
ϵ =

(
M + 1

3

)
ϵ =

1

6
M(M2 − 1)ϵ

9Note that the Čech and Alpha filtrations give the same persistent homology, by the nerve
thereom [141].
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Finally, from theorem 1 we have:

∥χ(K(r, t0)) − χ(K(r, t0 + δ))∥1 ≤ 2
1∑

n=0

W1(PDn(K), PDn(L)) =
1

3
M(M + 1)(M + 2)ϵ

In the inequality above the sum was done over n = 0, 1 as the Čech filtration
has the same persistent homology as the Alpha filtration, therefore dimension n=0,1
is sufficient for our datasets.

5.3 Application on simulated data

To examine the theoretical background explained in the previous section, I then used
two different kinds of time-varying point sets generated from two kinds of simulated
systems. The first objective with simulated data was to explore how the construction
of ECS gets affected by the choices of methods to construct the cell complexes and
with perturbations in Sub-section 5.3.1, where the number of points in the vertex
set grows with time. Following that I shall verify the relations established earlier in
5.2.3 and 5.2.3 with simulated data sets in 5.3.2 where the number of points in the
vertex set is constant in every time step.

5.3.1 Eggbeater Flow: Dependence on parameters, Stability
of ECS

Recalling the previous study in the Chapter(4), the analysis was done for simulated
flow patterns of a fluid mixing model by constructing Euler Characteristic Surfaces
using “coarse-graining” or the “union of r-neighbourhood” approach. Here, the
analysis gets further extended with the study on the Euler Characteristic Surface
using simplicial complex and exploring its mathematical characteristics on the same
fluid mixing model of modified egg beater flow [125] that was used in the Chapter(4).
The simulation model generates a point cloud at each time step following the equation
Eq.(5.8) that describes the path of the flow at that time instant within a Poincare
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section of length 1 × 1. So, the point cloud that we are studying is the same as in
Chapter(4).

xt+1 = xt − kyt(1 − yt)

yt+1 = yt − kxt(1 − xt)
(5.8)

Figure 5.7: (a) Alpha Complex of flow pattern of modified egg-beater flow at time-
step t=500 with k=4.1, at scale r=0.01447 estimated χ=161, (b)Same point set at
same scale(r = 10) with “coarse-graining” or “union of r-neighbourhood” approach,
estimated χ =148.

The seed point was chosen similar to our previous simulation which is (0.9,
0.2) and the process was allowed until 10,000 time steps for a constant value of k.
The same families of dynamical systems for different values of k ranging between
k = 4.0 to k = 5.0 were studied but this time the point cloud at each time step of
the simulated flow system for a constant k was used to make the Alpha complex. The
scales of filtration used to construct the Alpha complexes were almost comparable
to the scales used for discrete grid systems where we had built the cell complex
via the “union of r-neighborhood” or “coarse-graining” approach. The values of
the scales in Alpha Complex were converted from the integer values of the scales
in the “r-neighborhood” into Euclidean distances by considering the approximate
pixel/grid size. The Euler Characteristic(χ) was estimated in Alpha complexes using
the alternative sum of numbers of zero-dimensional (point), one-dimensional (line),
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and two-dimensional (triangle) simplices. In the case studied, the complexes have
two homology groups, H0 and H1(As the point cloud is embedded in 2-diemensional
Euclidean space). If the “coarse-graining” or “union of r-neighborhood” method
the value of the Euler Characteristic was estimated by the difference between the
number of black clusters(Nb) and the number of white clusters (Nw) in the binary
pixelated cell complexes, χ = Nb −Nw. Figure (5.7) shows the estimated values of
Euler Characteristic (χ) at different scales using both approaches. The values show
a small deviation at higher scales (poorer resolution) as the conversion from pixels
(with r-neighborhood included) to Euclidean radius value in the Alpha complex
can not be very precise at higher scales(due to the discrete nature of the pixels).
For Alpha complexes on a point cloud embedded in a continuous Euclidean space,
the estimation of Euler characteristic becomes exact at all scales since there is no
discretization required.

Figure 5.8: For Flow pattern with k = 4.1 -(a) 0-dimensional Betti surface, (b)1-
dimensional Betti surface, (c) The Euler Characteristic surface.

The Euler Characteristic Surfaces carry a summary of topological features
present in all dimensions from the simplicial complexes generated from a dynamical
system. It must be noted that if one is interested in studying a single-dimensional
topological feature in detail, for example the the 0-dimensional simplices represent-
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Figure 5.9: (a)Euler characteristic surface constructed through Alpha complexes,
(b)Euler characteristic surface constructed through ’coarse-graining’ or union of r-
neighborhood approach on the pixelated grid, (c) The values of estimated Euler
Characteristic (χ) at different scales using the two methods.

ing the connected components/ clusters, or the 1-dimensional simplices representing
the loops, it can be done by constructing individual Betti surfaces similar to ECS
construction. As seen in Figure (5.8), the spatiotemporal evolution of n-dimensional
Betti numbers can be summarised into surfaces that we name the n-Betti surface
βn(r, t). For the simulated flow pattern discussed above, the Betti surfaces corre-
sponding to critical point k = 4.1 is displayed in Figure (5.8), where we can see
the β0 surface is qualitatively quite similar to the Euler Characteristic Surface but
the β1 surface representing the loops is clearly different and smaller in magnitudes.
The metric distance between two Betti surfaces of two different dynamical systems
can also be estimated in a similar fashion that was done for the Euler metric, i.e.
estimating the the L2 norm and the L1 norm distance between two Betti surfaces of
similar dimension.

Despite the small discrepancy between the estimated χ values with the two
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Figure 5.10: Euler metric estimated between surfaces with k and k+dk where dk=0.1,
using both approaches.

different kinds of cell complexes, in the over all the Euler Characteristic Surfaces con-
structed from the two methods appeared to be similar, Figure (5.9). Further, using
Euler Lp (p = 1, 2) Metrics one can quantify their similarity or dissimilarity. Euler
Characteristic Surfaces, for the dynamical systems of modified egg beater flow mod-
els using equations 5.8, were constructed this time with different k values, using the
traditional Alpha Complex approach. Followed by the Euler Metric between surfaces
of dynamical systems corresponding to parameter k and k + dk, were estimated in a
similar manner that was done using “coarse-graining” or “union of r-neighborhood”
in Chapter(4), Section(4.2.1). Values of the Euler Metric from both methods are
shown in the plot in Figure (5.10). The estimation of the Euler Metric in both meth-
ods turns out to match each other regardless of the discrepancy in the estimation
of Euler Characteristic. Thus it can be concluded that the proposed Euler Metric is
independent of the methods or approaches used to compute Euler Characteristic(χ).

Next, the question that came to our mind is how high the scale of filtration
should be taken to construct the ECSs, and whether these surfaces are stable with
respect to small perturbations. For that, the stability of the Euler Characteristic
Surfaces with respect to a small perturbation in the scale of resolution was tested.
For a stable tool, a small perturbation in the scale should result in a small change in
outcome or measure too. Therefore, the Euler Metric estimated between two Euler
Characteristic Surfaces, one expanded up to scale R with the other ECS expanded up
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Figure 5.11: Euler metric estimated between surfaces keeping R upto scale
10(black)and upto scale 11 (red).

to R+dR, were compared keeping the other parameters constant. Given the change
in scale, dR is small, the change in the measure of the Euler Metric turns out to be
small too if the Euler Characteristic Surfaces are constructed with finer variations in
scale and up to scales high enough to cover almost all possible topological features
(in particular, critical scales should not be missed. See remark 2). The results of
perturbing the scale on Euler Characteristic Surfaces and thus on Euler Metric are
displayed in Figure (5.11). As one can see that the values of the Euler Metric between
surfaces constructed up to scale 10 and scale 11, do differ very small compared with
scale 8, where the change is louder.

5.3.2 Vicsek Model: A case study

The simulation model for egg-beater flow was alright to study the properties of
ECS where the number of points was not needed to be constant at each time step
but to compare the ECS with modules in Persistent homology and verifying the
mathematical relations set up in Section5.2.3, a dynamical system with constant
number of point at every time step of evolution was the best choice. At that point,
we decided to model the dynamical system using the well-known Vicsek model [149].
This model, renowned for illustrating collective behavior in living systems, offers a
simple yet fascinating approach to observing a wide range of topological patterns.
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In Persistent Homology, different metrics and approaches have been intro-
duced to study the similarity and dissimilarity of shapes between two point clouds,
the common ones being the “Bottleneck distance” and the “Wasserstein distance”.
Substantial works applying these tools on static point sets [150, 151, 152] have been
produced. Recently, they have been studied for time-varying metric spaces also, with
approaches like those proposed in [136]. However, the frameworks might not be very
much successful in interpreting time-series data. In the analysis below the stability
of our proposed metric EM against the 1-Wasserstein distance, proposed in theo-
rem(1)will be tested with the simulated data generated using the Vicsek model. For
this, we first constructed the alpha complexes of the time-varying point clouds. The
number of points (living matter) in each time step was kept constant by employing
the periodicity within a box of length L. The classical Vicsek equation describing col-
lective behavior is described in Eq.5.9 where each point/living matter travels with a
constant magnitude of the velocity(v) and its orientation of velocity(θ) is influenced
by its neighboring particles along with a noise parameter η.

xi(t + 1) = xi(t) + vi(t + ∇t)∇t (5.9a)

θi(t + ∇t) =
1

N

∑
|xi−xj |≤R

θj(t) + U(
−η

2
,
η

2
) (5.9b)

Different configurations of parameters η, R, v, L and N can be used to
model different sets of dynamics. In this study the distribution of the points in
this model was varied by two scenarios - (i) by varying noise parameter η for a
constant sphere of interaction with radius R and (ii) by varying the radius of the
sphere of interaction R for different noises ranging from η = 0 to 5. The box
length L was kept at 1.0 unit, with the number of particles N = 500 moving with
a velocity of magnitude | v |= 0.03. For lower values of noise or zero noise, the
randomly distributed point set gr gradually transformed into aggregated clusters
along with the order in motion taking place in the system. When the noise became
high, it dominated the neighborhood interaction, and chaotic motion was prominent
in the point sets with no order observed. This is discussed in detail in the following
paragraphs.

Analysing point clouds with and without noise(η) for a constant R

As the noise parameter (η) is an important one to decide the dynamics of the simu-
lated point clouds, two different situations of the dynamical point sets were consid-
ered for the analysis-(i)the time-varying point clouds with noise, η = 0 and (ii) the
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time-varying point clouds with noise, η = 0.9. In both cases, the other parameters
were kept similar, R = 0.05,N = 500, and L = 1. Alpha complexes with scale r,
varying from 0.005 to 0.065 unit, were constructed for each in the time series of point
clouds. The scale of filtration to build these complexes is non-trivial as it highly in-
fluences the connectivity of clusters and loops. In Sub-section(5.2.1), Figure (5.3)
shows the point cloud of the simulaton with noise, η = 0 at time step t = 11, where
the Alpha complex of the same point cloud at different scale r carried different topo-
logical features. Hence, while constructing the Alpha complexes, finer variation of
scale was considered which makes the Euler Characteristic Surfaces stable, capturing
sufficient topological information.

Verification of proofs A numerical verification of the stability results correspond-
ing to L1 Euler Metric, Eq. 5.5, was performed with these real simulated data-sets
via the construction of the Euler Characteristic Surfaces and their time slices. Both
the Euler L1 metric and 1-Wasserstein distance were estimated at suitably spaced
intervals of time-slices where the point sets had different geometry.

Table.5.1 shows supporting evidence for the theory discussed in Section 5.2.3.
Here, for a particular time step t∗ and between two dynamical systems K and L, let

A = ||χ(K(r, t∗))−χ(L(r, t∗))∥1 and B = 2
[∑

0≤n≤1W1(PDn(K), PDn(L))
]

, where

W1 is 1-Wasserstein distance between n the persistence diagrams of K and L i.e. the
dynamic point cloud with η = 0 and the same with η = 0.9. According to Eq.(5.5),
A ≤ B which agrees with the values in Table.5.1, at all time-steps considered.

The temporal stability of our Euler Characteristic Surface proposed in the-
orem (3) for the uniformly continuous-discrete dynamical system was also verified
with the point clouds at close time intervals. As the number of points is constant in
every time step of the simulation and the point cloud moves with a finite and small
velocity(| v |= 0.03), the change in Euler Characteristic Curves was hypothesized
to be finite and small. Figure (5.12) shows the Euler Characteristic Curves, which
are the time-slices of the Euler Characteristic Surface at different instants of time.
One can see that for closely separated time intervals, the distance between the Euler
Characteristic Curves is small(especially in the lower values of filtration of scales).

Further to quantify the temporal stability, the L1 Euler metric between two
Euler Characteristic Curves with different time-interval (dt) apart was calculated
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Table 5.1: Measures between point clouds for η = 0.0 and η = 0.90

time(t∗) point cloud at η = 0.0 point cloud at η = 0.9 A B

11 1.3869 2.3825

151 4.2975 6.3003

351 5.3040 7.5766

451 5.1494 7.2694

for the dynamic point clouds in both of the cases i.e. η = 0.9 and η = 0. The
smaller the time interval between two point clouds, the closer the Euler Characteristic
curves are in Figure (5.12). This hinted that the metric distance between two Euler
Characteristic Curves, corresponding to two point clouds that are small time-gap
apart, should also be small. Figure (5.13) shows the values of the L1 Euler metrics
between two Euler Characteristic Curves, dt time-interval apart, plotted against
time-interval dt. As one can see in the snapshots given in Table (5.1) when the
simulation had zero noise, η = 0, the system quickly ordered forming dense and few
aggregations of clusters/flocks. For comparatively larger noise, η = 0.90, the system
did not follow such ordered alignment, making the point cloud more scattered and

120



Figure 5.12: Slices of Euler Characteristic Surfaces at different time steps for the
ECS corresponding to η = 0.9.

sparse. This distinction of behavior is reflected in the Euler Metric, Figure (5.13).
For zero noise the the slope of the Euler L1 metric vs time-interval curve is sharp and
quickly reaches the equilibrium state (after sufficient dt later when the system settled
into a state with ordered flocks, making no further change in the topology and hence
in EM values). For noise η = 0.9 the metric distance fluctuates initially and then
takes a longer time to reach a chaotic stable state. The chaos sustains without much
fluctuation in the distribution of the point cloud. Also, a slightly higher value of the
Euler Metric is observed for this case. The plot further shows that when dt is small,
the L1 Euler Metric value is small(≈0.25) which justifies the theorem about temporal
stability of Euler Charactric Surface, theorem 3 and matches the quantitative bound,
taking m = 500 and ϵ to be small.

Analysing Point Clouds with different noises(η), for different R values

The behavior of the Euler Metric in Figure (5.14) with different values of noise in-
stigated to continue more analysis to understand whether there exists any reflection
of the order-disorder transition in the Vicsek Model on our topological marker Euler
Metric. By ‘order’ it is meant the traditional order parameter va which is the average
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Figure 5.13: The L1 Euler metric between ECS time-slices with dt distance apart
from time slice t = 39.

normalized velocity of the particles/points. Therefore va =
1

N | v |
|

N∑
i=1

vi |. When

the system is perfectly ordered or all particles are aligned in the same direction, the
order parameter va = 1, and as the disorder increases, it moves more towards zero.
Figure (5.14a) shows that with the increase in noise η how the dynamical system
moves from order to disorder. We tried different variations in interaction radius R,
measuring how far one particle/ point will be influenced by the orientation/move-
ment of the neighbouring particles. For very large R the system quickly reached
its equilibrium state (that may be ordered or disordered depending upon the value
of noise) as the interactions were very large. Now, to analyze from the topological
aspect, as usual, the Alpha complex of the dynamical point clouds corresponding to
similar values of η and R was generated followed by the construction of Euler Char-
acteristic Surfaces. Next, the ECSs corresponding to a specific η were compared with
the ECS corresponding to η = 0, keeping the interaction radius R constant. The L2

Euler metric (Eq.5.1) was estimated for the comparison and the results are displayed
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Figure 5.14: (a) L2 Euler metric estimated between ECSs of noise η and zero noise.
(b) The order parameter vs noise (η) is plotted for different interaction radius R.

in Figure (5.14b). The plot shows that the slope of the Euler Metric remarkably
changes around noise η ≈ 0.9 where the order-disorder transition happens in corre-
spondence to Figure (5.14a). This result suggests that once the system enters into
disorder with the increase in noise, the metric distance varies less, making a plateau-
like region in the plot of the Euler metric. Thus, the variation Euler metric with
noise carries a signal to the physical phase transition from order to disorder. This
indeed needs to be studied more in detail in the future to explore whether quantita-
tive changes in Euler Characteristic Surfaces measured by the Euler Metric have the
potential to act as an alternative marker to characterize phase transition in collective
motion phenomena.

5.4 Conclusion

This final work in my dissertation thus successfully established the robustness of
the proposed construction of the spatiotemporal topological map of a dynamical
system - the Euler Characteristic Surface (ECS) along with the measure that can
differentiate between two ECSs - the Euler Metric. The correlation between the
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tools of ECS construction with the standard measure of Persistent Homology (PH),
commonly used by the TDA community, was set up and it helped to strengthen the
mathematical framework of the constructs.

Classically, PH examines the dynamical system at different length scales at
any fixed time, whereas most of the dynamical systems often exhibit intriguing topo-
logical changes across both scale and time. Recently, the time evolution of such
systems has been analyzed using methods like Crocker Plots and Persistent Vine-
yards, which integrate Persistent Homology into dynamic contexts. Despite their
utility, these methods are computationally intensive, and their stability requires fur-
ther examination. Our proposed topological tool, the ECS, aims to encapsulate
information about both the scale and temporal dynamics of a system within a single
map. By demonstrating the stability and robustness of ECS against perturbations,
it is established that ECS and EM can work as a powerful topological tool for an-
alyzing dynamical systems. The ECS construction offers a streamlined approach to
capturing complex topological changes, potentially transforming our understanding
and analysis of dynamical behavior.

The highlights of this chapter may be summarized thus:

• Construction of the ECS using appropriate simplicial complexes based on the
data points (filtered by a scale parameter) gives more precise results and is
preferred over using discretized grids to map data cloud and calculate Euler
Characteristic. However, in the case of extracting data from digital images, one
can not bypass the usage of discrete grids/pixels. Since it was found that ECS
constructed from both “coarse-graining” in grids and “simplicial complex” in
Euclidean space were closely similar, and the Euler Metric remained unaffected
by these choices, researchers can select the cell complex or ECS construction
method that best suits their model.

• The Euler Characteristic Surfaces are robust to small perturbations in scale
and time provided they are built up with fine resolutions in scale and time
and up to sufficiently large scales that cover almost all topological features (all
critical scales) and changes present in the dynamical system. This is indeed an
important characteristic of the tool that establishes its stability.

• Recreating the Euler Characteristic Surfaces via Betti Curves from Persistence
Diagrams and establishing the correlation between a time-slice of the ECS and
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Persistence Diagrams make the ECS an alternative and more powerful tool
of analysis in Topological Data Analysis. Additionally, it also contains the
temporal development of the system, unlike Persistence Diagrams.

• The relations between the metric distances, the p-Wasserstein distance of Per-
sistence Homology (PH), and the L1 and L2 Euler Metric of ECS lends to the
stability of the Euler Characteristic Surface(ECS). The Euler L2 Metric has a
Hilbert space structure making it suitable for direct applications in machine
learning algorithms, while better stability results were obtained using the Eu-
ler L1 Metric. However, for systems with a finite number of points, this is
not a major disadvantage as L1 is embeddable in Hilbert space with bounded
distortion.

• Similar to the previous study in Chapter(4), The ECS with the Euler Met-
ric(EM) acted successfully to deliver an efficient summary of dynamical systems
and thus to quantify the similarities and dissimilarities between two different
dynamical systems/time-varying data sets.

• The ECS construction with the L1 and L2 metric further gave cues to order-
disorder transitions in the collective motion of particles as observed in the
analysis using the Vicsek Model dynamics.
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Chapter 6

Conclusion and future directions

In this dissertation, I tried exploring dynamical systems by studying their geometry
and topology, intrigued by the quest of how the patterns in a complex dynamical
system encapsulate the principles of physics driving these systems. Can studying the
topological patterns in turn help one find a pattern in the systems? How can one
quantify these patterns and whether quantifying them will be fruitful at all?

I started the study with simple static real crack mosaics that were created by
the dynamic process of desiccation and tried analyzing the combinatorial topology
along with the geometric properties of the mosaics(Chapter2). Through the study, it
was learned that classifying planar mosaics with respect to their individual material
characteristics is not possible by only considering the combinatorial topology mea-
sures (n, v) and thus included the geometrical measures, “Angular defect” D, and
“Iso-perimetric ratio” or “shape parameter” λ. A 4-parameter tuple (n, v,D, λ) was
proposed to effectively describe a crack mosaic. This made similar materials form
clusters in 3D spaces of (n, v,D) and (n, v, λ), aiding in material identification from
crack patterns. Simulated crack patterns from models like Voronoi, Gilbert, and Iter-
ative cell division were compared to real crack patterns, providing insights into crack
formation mechanisms. Additionally, in-house codes were developed to attempt mea-
suring a few non-convex polygon features present in real crack patterns. The study
further inspired research into the time-development trajectory of crack mosaics in
topology-geometry space of (n, v,D, λ) in simulated columnar joints where the meta-
morphosis from the less symmetric Gilber tessellation to more symmetric Voronoi
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tessellation was summarized in the (n, v,D) and (n, v, λ) trajectories.

From static polygonal patterns, I further moved into understanding complex
flow patterns in droplet evaporation. In studying the flow features, the need to
consider the multiscale (length-wise/resolution-wise) evolution of the patterns along
with the temporal evolution was realized. A novel topological approach was em-
anated −“Euler Characteristic Surface”(ECS) along with “Euler Metric”(EM). The
ECS carries the information of the spatio-temporal evolution of the topology in a
dynamical system and the EM further quantifies the distance between two ECSs.
The dynamic flow patterns in a drying droplet of polystyrene beads in water were
analyzed through image processing followed by studying the evolution of the Euler
Characteristic (χ) over time and scale. The study quantified the changes in clus-
tering and connectivity in the aggregation features of the particles (that were the
consequences of the flow within the droplet) and marked different phases/ modes
of evaporation with different dominant forces (Chapter3). It was hypothesized that
the Euler Characteristic Surface χ(r, t), which summarizes topological features, may
serve as the system’s topological signature. The associated contour plot of the ECS,
“Euler Characteristic Level Curves”(ECLC) can provide a low-dimensional summary
of topological evolution and identify persistent features and sudden changes in the
process.

The concept, “Euler Characteristic Surface” and “Euler Metric”, was further
employed in studying more fluid dynamical systems, with both simulated and real
data sets (Chapter4). The ECS and EM were found to be effectively quantifying the
similarity and dissimilarity between dynamical systems. Additionally, the steady
and the critical domains in the parameter variation for the simulated egg beater flow
were identified by simply constructing ECSs and measuring the Euler Metric(EM)
between the dynamical flows. Real droplet systems with different particle-fluid com-
positions and the same ambiance were compared with respect to ECSs and EM and
the outcomes of the analysis were justified, especially the ECSs corresponding to
two different droplet systems and similar droplet systems effectively portraying the
difference or similarity respectively. The study established that the Euler Charac-
teristic Surface and Euler Metric are strong descriptors for characterizing similarity
and dissimilarity in dynamical systems.

All done, The mathematical picture of our ECS and EM was set up in Chap-
ter (5) where the stability of the topological construct with respect to the already
established modules in Homology was studied. The construction of ECS using sim-
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plicial complex, Alpha complex was done and compared with the construction of
ECS through coarse-graining or union of r- neighborhood method(used in Chapters
(3,4)). Theorems were proposed and proved that describe the spatial and temporal
stability of the ECS. This mathematical stability vastly strengthens the construction
of ECS and EM. Simulated data using the Vicsek model was used to further verify
the proposed theorems. In the process of analyzing the data, additionally, a cue for
phase transition from order to disorder through ECSs and EM was uncovered, which
further supported how sensitive and strong this topological construction can be!

Below, I summarise the key findings of this whole journey.

• Examining dynamical systems through the lens of topology and geometry can
reveal valuable insights into the underlying physical processes. For instance,
it can elucidate different phases and dominant flows in droplet evaporation,
the geometric transformations in columnar joints driven by thermal flow, the
critical flow regimes in the modified egg-beater model, and the patterns of
aggregation in the Vicsek model, all of which align cohesively with the core
philosophy of this study.

• Our novel tool - Euler Characteristic Surface and Euler metric worked fairly
well as a topological descriptor and marker in the dynamical systems studied.
It created a multiscale temporal topological summary for a dynamical system,
accompanied by the Euler Characteristic Level Curves that carry that summary
in low dimensional projection. The Euler metric(EM) quantified the similar-
ity and dissimilarity between two systems in terms of their topology. These
measures were not only able to characterize and distinguish between complex
dynamical systems but also have the ability to carry cues for physical phase
transition and critical points in the studied dynamical systems.

• Computing ECS and EM is moderately less expensive for large complex datasets.
Solving differential equations numerically in dynamical systems or using other
tools of topological data analysis (TDA), like Persistence Homology (PH) is
sometimes difficult for large complex systems. The simplistic formulation of
Euler Characteristic Surface along with its computational advantage make it
suitable for possible applications in various practical situations involving big
data.

• The verified quantifiable stability of the Euler Metric(EM) establishes the ro-
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bustness of the construction- the Euler Characteristic Surface(ECS). Estab-
lishing the relation between the ECS and Persistent Homology(PH) completes
mathematical framework.

• There still exists some limitations - Comparison of ECSs through Euler Met-
ric has been limited to systems having a comparable scale of resolution and
temporal stretch, in this dissertation. How the framework can be used for
dynamical systems with widely different filtrations/ scales of resolution and
temporal span, needs further consideration. Also, the optimal removal of noise
and data extraction is the core of the construction, for working with real data,
on which the outcome of the application of our tools vastly depends.

• Lastly, The ECS is a very new tool and it indeed needs diverse application on
various dynamical systems for more interpretation!

6.0.1 Future directions:

There are indeed certain avenues for further exploration and research. The cues
of order-disorder phase transition that we observed in the Vicsek model, that may
be examined further for more precise results with trialing over a larger number of
configurations. It will be certainly computationally very expensive and needs a clear
framework before proceeding.

Also, can this approach of studying topological information further be used
for “parameter recovery” in dynamical systems? Given a sufficient amount of in-
formation on different scenarios in a dynamical system through constructing corre-
sponding Euler Characteristic Surfaces, whether parameter recovery can be done for
an unknown scenario in real data sets. That could be beneficial for machine learning
algorithms.

This stability study of the ECS in Chapter(5) was limited to the stability
with respect to scale and time, separately, one at a time. In the future, the mathe-
matical framework can further be extended to study the total stability of the Euler
Characteristic Surface with respect to perturbation in time and scale, both simulta-
neously.

Mathematically, one may also think of constructing a higher dimensional
version of the Euler Characteristic Surface where one may adapt filtering functions
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f : K → RN+1, with N coordinates representing N spatial filters and one coordinate
representing time and can proceed with similar manner. But, before applying it to
a physical system one must reflect on where it can be applicable and whether that
extra information provides a better understanding of the dynamical system.

Lastly, this overall construct was studied for the few dynamical systems that
we discussed in this dissertation. There exist different dynamical systems where
studying the evolution of topology through the proposed construct may be explored,
particularly I am interested studying collective motion in active matter and brain
connectivity with the same philosophy that I proposed here.
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[149] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase
transition in a system of self-driven particles, Physical review letters 75 (6)
(1995) 1226.

[150] S. Agami, Comparison of persistence diagrams, Communications in Statistics-
Simulation and Computation 52 (5) (2023) 1948–1961.

[151] M. Tsizh, V. Tymchyshyn, F. Vazza, Wasserstein distance as a new tool for dis-
criminating cosmologies through the topology of large-scale structure, Monthly
Notices of the Royal Astronomical Society 522 (2) (2023) 2697–2706.

[152] M. K. Chung, C. G. Ramos, F. B. De Paiva, J. Mathis, V. Prabhakaran, V. A.
Nair, M. E. Meyerand, B. P. Hermann, J. R. Binder, A. F. Struck, Unified
topological inference for brain networks in temporal lobe epilepsy using the
wasserstein distance, NeuroImage 284 (2023) 120436.

145


	Introduction:
	Characteristics of frameworks suitable to study complex dynamical systems: 
	Topology and Dynamical Systems:
	Studying topological invariants:
	Topological data analysis:

	Outline

	Studying combinatorial topology of crack networks: A 4-parameter space
	Background on planar mosaics
	The topological combinatorics (n,v) and n-v plane :
	Introduction of geometrical measures
	The parameter space of quadruples (n,v,D,)

	Analysis work-flow
	Extracting crack skeleton from images
	Identification of nodes: calculation of angles at nodes
	Simulated crack mosaics

	Observation from the analysis
	Mapping the topology of the crack mosaic on the (n,v) plane
	Refining by introducing geometric measures - the (n,v,D,) space
	Including Hausdorff Measure for comparison

	Comparing real and simulated crack mosaics
	Evolution of crack pattern in (n,v,D,)space:
	Discussion
	Conclusion

	Studying the topological picture in fluid dynamical systems: Introducing the Euler Characteristic Surface
	Introduction:
	The physical system
	Image Processing:
	Thresholding for grey scaling
	Gaussian Filter
	Image and tessellation:
	Euler Characteristic on triangular lattice:
	Extension to hexagonal tessellation:

	Evolving topological features of agglomeration patterns and the dynamical system
	Time evolution of the Euler Characteristic through images

	Introducing the approach for multiscale study of topological features:
	Introduction to the Euler Characteristic Surface (ECS) :
	Euler Characteristic Level Curves
	Proposing the Euler Metric for dynamical systems

	Discussion
	Particle agglomeration features
	Flow stability features

	Conclusion

	Characterizing fluid dynamical systems using Euler Characteristic Surface and Euler Metric
	Introduction
	Material and Methods
	Simulated dynamical fluid flow system
	Stochastic flow systems: Flow patterns in drying droplets 

	Results and Discussion
	Analysis of simulated fluid flow 
	Analysis on stochastic dynamical fluid system

	Conclusion

	The mathematical framework and stability of the Euler Characteristic Surface 
	Introduction
	Mathematical Framework
	Cell Complexes and Euler Characteristic Surfaces 
	Homology, Betti Surfaces and Persistence Diagrams 
	Comparison with Persistent Homology

	Application on simulated data
	Eggbeater Flow: Dependence on parameters, Stability of ECS 
	Vicsek Model: A case study 

	Conclusion

	Conclusion and future directions
	Future directions:


